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Abstract: We theoretically study the effect of quantum exceptional points on the optical properties of
a quantum dot placed inside an optical microcavity and interacting with a weak probe field. Using
a quantum approach, we study the steady-state behavior of the system and calculate the optical
susceptibility. By separating the total susceptibility into two equivalent susceptibilities, corresponding
to fictitious free quantum emitters, we show exceptional points’ drastic effect on the optical properties
of the system close to the region where the exceptional point is formed. We further examine the
optical properties of the system in the regions of the parameter space that arise from the exceptional
condition, namely the strong coupling regime and the weak coupling regime.
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1. Introduction

Exceptional points (EPs) have been studied in a plethora of classical optical sys-
tems [1–4] and can dramatically modify the optical response of a studied system. Recently,
there is increasing interest in applying the EP formalism in fully quantum systems to
achieve efficient control at the quantum level and to show the drastic effect that EPs have
on a system’s properties [5–8]. In this work, we theoretically study the effect of quantum
EPs on the optical properties of a quantum dot placed inside an optical microcavity and
interacting with a weak probe field. For the analysis of the system, we use a quantum
approach, where we model the quantum dot as a two-level system and describe the light–
matter interaction with the proper master equation, including the spontaneous decay and
the pure dephasing of the quantum dot, as well as the decay of the optical cavity. We also
define the effective non-Hermitian Hamiltonian of the system and derive the necessary
conditions for the formation of an EP, the point where the eigenvalues of the Hamiltonian
coalesce.

We then study the steady-state behavior of the system and calculate the optical sus-
ceptibility from the coherence between the vacuum and the system, which can lead to
cavity-induced transparency [9,10]. By separating the total susceptibility into two equiva-
lent susceptibilities, corresponding to fictitious free quantum emitters, we show EPs’ drastic
effect on the optical properties of the system close to the region where the exceptional point
is formed. We further examine the optical properties of the system in the regions of the
parameter space that arise from the exceptional condition, namely the strong (coherent)
coupling regime and the weak (incoherent) coupling regime. In conclusion, we give an
overview of the effect of EPs in a purely quantum system and we show how they affect its
classical properties.
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2. Materials and Methods

We consider a system consisting of a quantum dot, modeled as a two-level quantum
emitter (QE), placed inside an optical microcavity, as illustrated in Figure 1. The QE is
coupled to the electromagnetic field inside the cavity with coupling rate g. The QE is
also subject to decay γ due to spontaneous emission and a pure dephasing rate γ∗ (in our
analysis, we take γ∗ = 104γ to be in agreement with solid-state QEs such as quantum
dots). Additionally, the cavity decays in free space at a decay rate of κ. Lastly, we consider
an external probe electromagnetic field, E = E eiωpt + c.c., that interacts with the QE.
Thus, the Hamiltonian is H0 = ωaσ+σ− + ωca†a + gσ+a + Ωei∆tσ+ + h.c., where Ω = µE
corresponds to the Rabi frequency of the e→ g transition, µ is the dipole moment of the QE,
and ∆ = ωp −ωa is the detuning. In this work, we take h̄ = 1. We can define an effective
non-Hermitian Hamiltonian that encompasses both the coherent and the dissipative terms
of our system, given by He f f = H0 − (iκ/2)a†a− (iγ/2)σ+σ− − (iγ∗/2)σ†

z σz.

Figure 1. Illustration of the system under consideration. A quantum dot (grey) is placed inside an
optical microcavity of one electromagnetic mode (pink). The QE is coupled to the cavity mode with
coupling constant g and to an external probe field. Additionally, the QE experiences decay γ due
to spontaneous emission and pure dephasing with rate γ∗. Lastly, the cavity is open and, thus, has
decay rate of κ.

We investigate the eigenvalues of the effective Hamiltonian for the case of a weak
probe field, meaning Ω� g, γ, κ. The point where the eigenvalues coalesce corresponds to
the condition 2g/|γ + γ∗ − κ| = 1/2, which is independent of the probe field. In order to
study the optical properties of the system, we need to study its dynamics and steady state
by solving the Lindblad equation and evaluating its coherence with the vacuum. We find
that the susceptibility is given by

χ = ξ
∆ + i κ

2

g2 −
(

∆ + i γ+γ∗
2

)(
∆ + i κ

2
) . (1)

where ξ = Nµ/ε0, in which N is the atomic density of the quantum dot and ε0 is the
vacuum permittivity. The imaginary part of the susceptibility is a measure of the probe
absorption of the system, and the real part shows the dispersion relation of the system.

We separate the total susceptibility of the system into two parts, corresponding to two
“free QE” susceptibilities, such that χ = χ1 + χ2, which are given by

χ1 = ξ

(
i(γ + γ∗ − κ)

2
√

Z
− 1
)(

1
2∆−

√
Z + i(γ + γ∗ − κ)/2

)
, (2)
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2
√

Z
− 1
)(

1
2∆ +

√
Z + i(γ + γ∗ − κ)/2

)
, (3)
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where Z = 4g2 − (γ + γ∗ − κ)2/4. These “free QE” susceptibilities are of the form
χ = ξ A

(∆−∆0)+iw/2 , of which the real and imaginary parts are the well-known dispersion

χr = ξ
A(∆−∆0)

(∆−∆0)2+(w/2)2 and Lorentzian absorption χi = ξ
A(w/2)

(∆−∆0)2+(w/2)2 curves, respectively,
with amplitude A which is a complex number.

3. Results and Discussion

In Figure 2, we plot the imaginary part of the susceptibilities corresponding to the
absorption of each “free QE” and of the total system for weak cavity decay κ = 0.001γ
and strong dephasing rate γ∗ = 104γ as a function of the coupling g and the detuning ∆.
We clearly see that for 2g/|γ + γ∗ − κ| = 1/2, the “free QE” susceptibilities tend toward
infinity while the system’s susceptibility is finite and has two well-separated, symmetric
peaks. Thus, we can split the parameter space into two regions: the region of incoherent
coupling 2g/|γ + γ∗ − κ| < 1/2 and the region of strong coupling 2g/|γ + γ∗ − κ| > 1/2.
Special treatment is given to the region where 2g/|γ + γ∗ − κ| → 1/2. In the incoherent
coupling region, χi

1 is a narrow Lorentzian curve centered around ∆ = 0 with negative
amplitude, while χi

2 is a wide Lorentzian curve centered around ∆ = 0 with positive
amplitude. As g decreases, χi

1 becomes narrower and with smaller amplitude while χi
2

practically stays the same; thus, the “dip” of the total susceptibility χi at zero detuning
becomes less visible. In the coherent coupling regime, χi

1 and χi
2 are well separated and

symmetric around zero detuning, making the total susceptibility χi have two distinct
symmetric brunches. More specifically, for a large enough coupling, only the Lorentzian
part contributes; thus, each curve has at their center the detuning ∆ = ±

√
Z/2 and width

w = (γ + γ∗ + κ)/2. While the width stays the same as the coupling increases, their
amplitude decreases at approximately 1/g.

(a) (b) (c)

Figure 2. Imaginary part of the susceptibility of (a) the equivalent “free QE” 1, (b) the equivalent
“free QE” 2 and (c) the total system for small cavity decay κ = 0.001γ and strong dephasing γ∗ = 104γ

in the parameter space of the atom-cavity coupling g and the detuning of the probe field ∆.

Lastly, we investigated the behavior of the susceptibilities close to the EP as a function
of the detuning (see Figure 3). We observe that the closer the EP, the larger the “free-QE”
susceptibilities, and thus, exactly at the EP, they diverge to infinity. Additionally, the way
the “free-QE” susceptibilities diverge depends on the sign of the detuning and on the
region from which we approach the EP (depends on the type of limit, 2g/|γ + γ∗ − κ| →
1/2±). When the system approaches the EP from the incoherent coupling region, the two
susceptibilities correspond to a Lorentzian function (Figure 3), which are centered at zero
detuning and have comparable and opposite amplitudes. At the limit, χi

1 diverges to −∞
and χi

2 diverges to +∞ for all ∆, but the total susceptibility remains a positive finite number.
Thus, the total susceptibility has a wide “dip” at zero detuning and two symmetric peaks.
When the system approaches the EP from the coherent coupling region, both susceptibilities
correspond to Lorentzian dispersion functions (Figure 3). Similar to the previous case, at
the limit, χi

1 diverges to +∞ for negative detuning and to −∞ for positive detuning, while
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χi
2 diverges to −∞ for negative detuning and to +∞ for positive detuning. Again, the total

susceptibility is finite, and we see that it is a continuous function (limg→g±EP
χ = χ).
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Figure 3. Imaginary part of the susceptibility of the equivalent “free QE” 1 and 2 and for the total
system for small cavity decay κ = 0.001γ and strong dephasing γ∗ = 104γ as a function of ∆ for
parameters that approach the EP from (a) the left (g/|γ + γ∗ − κ| → 1/4−) and (b) from the right
(g/|γ + γ∗ − κ| → 1/4+), respectively.
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