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Organic corrosion inhibitors embedded in coatings play a crucial role in substituting
for traditional anti-corrosion pigments, which can cause acute toxicity problems to human
health and the environment. However, it is still not well understood why some organic
compounds inhibit corrosion and others do not. Therefore, we are currently developing two
complementary technological approaches to help corrosion scientists and engineers work-
ing in academia and across different industries choose the optimal inhibitor for each specific
problem. We (1) build an interactive exploratory data tool for the selection of the ideal
corrosion inhibitor, taking into account different conditions (type of alloy, electrolyte, pH,
etc.) based on previously published information (https://datacor.shinyapps.io/cordata/
accessed on 7 May 2021), and (2) develop machine learning models and an online tool
to perform an initial virtual screen of potential molecules for the design of more efficient
organic corrosion inhibitors [1]. These two approaches will contribute to the digitalization
of the search for inhibitors, helping to speed up research in corrosion science and tailor
corrosion-protective technologies in a more efficient and condition specific manner.
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