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Abstract: This review presents a mineralogical and physicochemical comparison of coal seams
located in the regions of Northwest and Central Greece. The comparison extends to the fly ash
derivatives from the coal combustion for energy production, in the cases where data are available.
Coal occurrences from Northwest Greece tend to exhibit higher content of rare earth elements (REE)
compared to those of Central Greece. Moreover, fly ash products show similar trends in Light-REE
compared to their coal parent rocks. The observed REE distribution seems to be correlated with the
occurrence of specific minerals such as allanite, monazite, as well as with Fe-contents.

Keywords: lignite; fly ash; maceral; rank; REE

1. Introduction

In Greece, lignite combustion used to be the primary power generation process,
satisfying over 30% of the national generation and corresponding to 19% of the Total
Primary Energy Supply (TPES) during 2016. However, nowadays, and as following the
EU policies intends to be a front-runner in diminishing the reliance on domestic lignite,
the contribution of lignite-fired power plants in the energy sector is rapidly decreasing,
although they still play a significant role in the stability of the electricity system [1].

Nevertheless, in this energy-transition phase, new opportunities that were overlooked
in the past, as well as challenges, have arisen concerning the potential value of domestic
lignite deposits, and their industrial wastes/derivatives. Among the various factors that
contribute to any decision making processes regarding the prospect and/or exploitation of
any raw material, knowing the properties of the raw material in question is the primary step.

In this context, this paper presents a synthetic review comparison of previously pub-
lished in scientific journals, or partially published in technical research data reports on
petrographical, mineralogical and physicochemical features from selected coal basins in
Northwest and Central Greece. The study areas include the following basins: (1) Meso-
hellenic Trough, (2) Dimitras-Karperos-Grevena basin, (3) Kastoria basin, (4) Ptolemais
basin, (5) Amyntaio basin, (6) Lavas-Servion basin and (7) Prosillio-Trigoniko basin from
the Northwest region of Greece, and the Almyros basin in Central Greece (Figure 1a).

The aim is to discuss the similarities and differences between the aforementioned
regions in terms of their essential properties, and to provide an initial record of the REE
distribution when data are available.
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2. Geological Setting

The lignite-bearing sequences investigated in this study were deposited in two main
tectonic phases; the older one is related to the formation of the Mesohellenic Trough as a
back-arc sedimentary basin that evolved during the Late-Oligocene to Miocene period [3–6]
within the stratigraphic units of this basin, where thin coal layers or lenses were developed
under deltaic and fluvial-lacustrine regimes. The second and main phase of coal formation
in Greece is related to the post-Alpine extension phase (Late Miocene to Late Pliocene) that
produced several intermontane basins in a NW-SE direction, occurring across the main axis
of Mainland Greece (Figure 1a). These intermontane basins, from a North to South direction,
include the Kastoria, Amyntaio-Ptolemais [7,8], Lavas-Servion, Prosilio-Trigoniko [9,10]
and Dimitras basins, as well as the Almyros basin further to the SE, and host thick lignite
seams [11], intercalating primarily with marls and clays, deposited mostly under lacustrine
regimes and secondary under fluviatile ones.

3. Methodology

This review is based on an evaluation of data published in international journals, as
well as in publicly accessible repository domains. Data were collated, evaluated, processed
and presented in Harker (binary) diagrams, ternary diagrams, REE-chondrite normalized
diagrams, and multi-trace primitive mantle element diagrams.

4. Results and Discussion
4.1. Proximate, Ultimate Analysis and Coalification

Regarding the proximate analysis data, the reported coals are mainly characterized by
medium to high ash yields in their exploitable (proven and/or probable) reserves, with
the coals of Tsotili in Mesohellenic Trough, Prosilio and Lava displaying average values ≤
15 wt% (dry basis), whereas the rest display between 15–25 wt% (db), with the Amyntaio
lignites being the most inferior (reaching even 40 wt%, db) (Table 1, Figure 1b).
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The volatile matter parameter ranges from 25 to 40 wt% (dry ash free basis) in Almyros,
Mesohellenic Trough, Prosilio and Lava to >50 wt% in the Ptolemais basin. Subsequently,
fixed carbon yields are above 40 wt% (dry ash free basis) in the Mesohellenic Trough,
between 20–40 wt% in Almyros, Ptolemais, Prosilio and Lava, and below 20 in Amyntaio.
In terms of heating value, the highest values (>5000 kcal/kg) are recorded in coals from the
Mesohellenic Trough and Lava, and the lowest (1700 kcal/kg) in Amyntaio. The features of
the proximate data indicate that the grade of the studied coals range from medium to very
low, and the coalification rank ranges from Low Rank A–B for Mesohellenic Trough and
Lava (sub-bituminous) to low rank C (lignite) for the rest of the basins (Figure 1b, [2]).

Elementary C, H, N, O and S average data of the studied coal samples are presented
in Table 1. Total sulphur values of coals from Northwest and Central Greece range between
0.7 and 1.70%, being classified as low to medium-S coals [12]. Coals from the Lavas basin
exhibit the highest average content of C among the lignites of Northwest Greece, whereas
those from Amyntaio exhibit the lowest. Additionally, in both the Almyros and Lava basins
the xylite-rich lithotype are more carbon-enriched in C than in the matrix. Plotting the O/C
and H/C on a van Krevelen diagram (Figure 2a) confirms this differentiation among the
xylite-rich and matrix lithotypes; additionally, it is evident that Lava coals (falling almost
in the sub-bituminous field) are of higher rank than the Ptolemais and Amyntaio, whereas
the matrix lithotype of Almyros is the least coalified.
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Table 1. Averaged physicochemical qualitive data of the coal seams from the Mesohellenic Trough
(MT; [13,14]), Almyros (Alm; [11,15]). Amyntaio (Am; [7,16]; Dimitras (D; [17]). Kastoria (K; [13]),
Lavas-Servion (LS; [18]), Prosilio (P; [19,20]) and Ptolemais (Pt; [21,22]).

MT1 Alm1 a Alm2 a Am1 D K LS1 b LS2 b P Ptl

Moisture (wt%) 9.1 50.0 52.6 54.3 50.0 48.3 46.7 21.5 42.3 44.3
Ash (wt%, db) 13.5 22.0 26.4 36.0 46.4 15.9 16.9 19.8 32.1
VM (wt%, daf) 41.8 32.1 24.7 27.3 30.2 30.5 41.1 34.5 55.9
Cfix (wt%, daf) 48.5 23.7 20.4 17.3 19.8 22.7 36.0 23.1 34.2
GCV(kcal/kga.r.) 5415 2600 1960 1723 1850 1770 2820 5560 2870 2404
STotal (wt%,db) 0.8 1.7 1.5 0.9 1.0 - 0.7 1.1 0.7 1.1
C (wt%, db) 52.6 44.8 40.8 58.2 63.8 45.1
H (wt%, db) 4.3 3.2 4.2 5.0 5.9 3.0
N (wt%, db) 0.5 1.1 2.8 1.2 0.3 1.0
O (wt%, db) 19.3 23.9 14.2 18.6 12.1 17.9

a: Alm1: west site, Alm2 east site; b: LS1: matrix lithotype, LS2: xylite-rich lithotype.
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4.2. Organic Petrographical and Mineralogical Data

The maceral analysis data of the reviewed coal deposits [11,22] indicate the dominance
of huminite group with detrohuminite being the most frequent subgroup. Only in the
xylite-rich lythotypes, telohuminite is the major maceral sub-group. Macerals of the liptinite
and inertinite groups occur on average with combined values less than 20 vol%. These
petrographical features indicate that the almost exclusive accumulation of humic coals
originates mostly from herbaceous plants, with minor arboreal contributions (Figure 1b)
(e.g., [23,24]).

In terms of mineralogical composition, Lavas-Servion coals contain quartz, mica and
kaolinite, siderite, pyrite, gypsum, calcite and magnetite [25,26]. The lignite of the Ptolemais
basin contains silicates in the form of quartz, feldspars and clays, carbonate minerals (calcite,
dolomite, aragonite, siderite) and sulphides and sulphates (pyrite, gypsum, anhydrite).
In the Amyntaio basin, the major minerals are quartz, kaolinite, siderite, and diaspore,
with the secondary occurrence of calcite and gypsum [26]. In the Almyros basin, the main
mineralogical assemblages are of quartz, feldspars, gypsum and calcite [11]. The contained
minerals reflect primarily the marginal lithologies of the palaeopeatlands, as well as the
intense detrital influx during peat formation, which results in the elevated ash yields.
Furthermore, the mineral matter type controls the type and the chemistry of the bottom
and fly ashes produced during coal combustion.

4.3. Classification and Geochemical Features of Fly Ashes

Based on the C-618 classification of fly ashes (ASTM; [27]), fly ashes from Amyntaio
and Ptolemais fall into Class-D and Class-C, respectively (Figure 2b). Nevertheless, the
vast majority of NW Greece fly ashes are classified as Class-C. Fly ashes from the Almyros
basin are poor in SiO2, Al2O3 and Fe2O3 and rich in CaO contents, whereas their plots lie
closer or within the Class-C field (Figure 2b; [28]).

4.4. REE and Trace Elements in Coal Samples

Available data from lignite samples from the Lavas-Servion (NW Greece [29]) and
Almyros (C. Greece [11,30]) basins for trace element and Rare Earth Element (REE) con-
centrations are presented (see Supplementary Material Tables S1 and S2). REE patterns
of Lavas-Servion lignites exhibit a high fractionation between light rare earth (LREE)
and heavy rare earth (HREE) elements. They also present strong negative Eu anomalies
(EuN/Eu* = 1.17–1.31), negative Nd anomalies and positive Tb anomalies. (La/Sm)N ratio
ranges from 3.33 to 3.59, whereas (La/Yb)N ratio ranges from 7.81 to 8.15.

Coal samples from the Almyros basin exhibit steep patterns decreasing from LREE to
HREE. They also exhibit strong negative Hf, Ho, Tm and Lu anomalies with positive Sm,
Dy, Er and Yb anomalies. EuN/Eu* ratio is extensively variable (0.88 to 1.31). (La/Sm)N
and (La/Yb)N ratios range from 2.50 to 3.33 and 5.43 to 10.87, respectively (Figure 3a).
Lignites from the Lavas-Servion basin exhibit higher REE contents compared to those of
Almyros basin.

Coal occurrences from Lavas-Servion basin exhibit a wide range of V (V: 30.40–95.10 ppm)
and Ba values (Ba: 46.90–101.80 ppm), whereas Zn contents are quite high (Zn:
56.90–88.50 ppm). Coal occurrences from Almyros basin display a wide range of Cr and V
contents (Cr: 57.20–136.00 ppm; V: 60.40–134.00 ppm). In addition, Ba and Sr values are
quite high ranging from 123.20 to 156.50 ppm and 142.80 to 194.20 ppm.

Analysis of the data presents sub-parallel patterns of multitrace elements in the Lavas-
Servion and Almyros basins (Figure 3b), characterized by strong positive Th, Pb and Ta
anomalies. In addition, they exhibit slightly positive P and Sm anomalies and slightly
negative Zr anomalies. Sr presents negative anomalies in Lavas-Servion lignites and
positive anomalies in Almyros lignites.
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The occurrence of significant detrital mineral components such as monazite, allan-
ite, zircon and xenotime is a major factor that controls the REE-enrichment in coal sam-
ples [32,33]. Monazite is usually associated with high REE values and negative Eu anoma-
lies. Lavas-Servion coal exhibits quite elevated REE contents and negative Eu anoma-
lies. Th values are positively correlated with IREE contents (IREE-Th: 17.33–2.00 ppm;
49.85–4.40 ppm; 40.13–4.20 ppm). An alternative hypothesis for the strong Eu anomalies
can be associated with the occurrence of plagioclase grains. The positive Nd anomalies
of Lavas- Servion coal also support the presence of REE-bearing monazite, which is an
Nd-bearing mineral. Sr anomalies are associated with the occurrence (positive anomaly)
or the absence (negative anomaly) of plagioclase grains, indicating that fly ashes from the
Almyros basin are plagioclase-bearing, whereas those from the Lavas-Servion basin lack
plagioclase grains.

Uranium exhibits strong positive anomalies in the multitrace element patterns of
Figure 3a. The occurrence of U in coal is usually associated with the amount of organic
matter, and occasionally with the presence of U-bearing minerals [34–36]. Although detailed
studies of Greek coals and related ashes regarding U affinity are limited, evidence for
organic affiliation are provided for Megalopolis lignite and a bituminous coal layer in the
Parnassos area [37,38].

4.5. REE and Trace Elements in Fly Ashes

Class-C fly ashes usually tend to be more abundant in REE, compared to the other
types, due to the substitution of Ca+2 and Fe+3 by trivalent LREE and HREE, respectively,
being highly comparable with fly ashes derived from the Powder River Basin and Jungar
coals [32]. Moreover, there is a significant relationship between the Fe-oxides compo-
nents in fly ash, formed from glass devitrification during coal combustion and the REE
abundance [32,39–41].

These results can explain the higher REE Chondrite Normalized patterns of coal fly
ash samples from the Lavas-Servion basin (Class-C), compared to those of their parent
coal (Figure 4). The REE-bearing minerals of the coal fly ash are usually hosted within the
Si-Al glass matrix, which offers them a low leaching efficiency [36,42]; a similar pattern has
been reported for coals in Greece regarding the behaviour of REE in laboratory produced
ashes [38], as well as for selective trace element enrichments (e.g., Th, Yb) from lignite
occurrences in the region of Lofoi (Florina basin) [43]. The total REE and Th in coal fly ash
samples range from 164.1 to 418.8 ppm and 6.2 to 10.7, respectively, whereas Ce is strongly
enriched. This is indicative of the presence of monazite within the coal fly ash samples,
whereas the occurrence of REE-bearing allanite cannot be excluded.
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from coal samples from Lavas-Servion and Ptolemais basins.

5. Conclusions

Physicochemical properties of coal seams derived from the regions of northwest
and central Greece are investigated against the coalification grade of the respective coals.
Both areas are characterized by the predominance of huminite group minerals. Inorganic
mineral components include quartz, feldspars, sulphides, sulphates, micas, carbonates and
Fe-oxides in various and unequal amounts between the different basins. Coal occurrences
from NW Greece exhibit higher Rare Earth Element (REE) contents compared to those
of Central Greece. This can be attributed to the occurrence of allanites, Fe-oxides and
especially monazite, confirmed by the strong negative Eu anomalies and the higher Th
values in samples from the Lavas-Servion basin. According to the ASTM classification, coal
seams are mainly classified as C-Class CaO rich coals. In terms of coalification, the reported
coals range from sub-bituminous in Mesohellenic Trough, Lava and Prosilio to lignites in
Ptolemais, Amyntaio, the less mature being in Almyros.
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