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Abstract: Gold nanoparticles (AuNPs) are one of the most remarkable nanomaterials. Due to their
small size, these NPs can cross the blood–brain barrier making them good candidates for the treatment
of diseases related to the central nervous system. The main objective of the present work was to
evaluate the influence of surface charge on the biological behaviour of AuNPs by assessing the
cytotoxic—viability and morphological alterations—and genotoxic—double strand breaks—effects
induced in neuronal cells exposed to AuNPs with different charges: cationic, anionic, and neutral.
Different toxicological behaviours were obtained depending on the surface charge of the NPs.

Keywords: gold nanoparticles; neuronal cells; surface charge; cytotoxicity; genotoxicity

1. Introduction

Gold nanoparticles (AuNPs) are one of the most remarkable nanomaterials. They have
aroused great interest in recent years because of their particular properties and their high
potential for biomedical applications [1,2]. Due to their small size, these NPs can cross
the blood–brain barrier, which makes them good candidates for the treatment of diseases
related to the central nervous system [3,4]. Despite these potential benefits, the information
about the short- and long-term effects of AuNPs in organisms and the environment is
very scarce, although several adverse effects have been reported (reviewed in [5,6]). Once
AuNPs enter the body, their interactions with biological systems have been found to be
related to their physicochemical properties, which determine their internalization within
cells [5]. The main physicochemical properties that affect AuNP toxicity include size,
surface chemistry, and shape [7]. On this basis, the main objective of the present work was
to evaluate the influence of surface charge on the biological behaviour of AuNPs. Thus,
the cytotoxic and genotoxic effects induced by AuNPs with different charges, i.e., cationic,
anionic, and neutral, were assessed in neuronal SH-SY5Y cells.
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2. Materials and Methods

The three types of AuNPs used in the present study were newly synthesized following
the method reported by Brust et al. [8]. The average hydrodynamic size and zeta potential
of NPs in neuron culture medium were determined by dynamic light scattering (DLS) and
electrophoretic light scattering (ELS), respectively, using a Zetasizer Nano-ZS (model ZEN
3600, Malvern Instruments Lt, Malvern, UK).

Morphological analysis was performed by employing an inverted light microscope
(Nikon Instruments Inc., Melville, NY, USA). Phase-contrast photographs of control and
AuNP-treated cells were obtained. The NP effects on viability were evaluated by MTT
assay [9] using a SPECTROstar Nano (BMG Labtech, Ortenberg, Germany) microplate
reader, and analysis of H2AX phosphorylation was carried out by flow cytometry [10]
in a FACScalibur cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). For all these
experiments, SH-SY5Y cells were incubated with the three different AuNPs at a range of
concentrations or the control solutions for 3 or 24 h.

Differences among groups were statistically analysed by the Kruskal–Wallis test, and
Mann–Whitney U-test for two-by-two comparisons, by employing the SPSS for Windows
statistical package (version 20.0, IBM, Armonk, NY, USA). The associations between two
variables were analysed by Pearson’s correlation. The experimental data are expressed as
mean ± standard error and a p-value of <0.05 was considered significant. All experiments
were run at least in triplicate.

3. Results and Discussion
3.1. Nanoparticle Characterization and Cellular Uptake

The AuNPs employed in the present study are 2–4 nm spherical NPs with a positive
(cationic), negative (anionic), or neutral surface charge. The results obtained from the
analysis of the hydrodynamic size and zeta potential of these NPs are collected in Table 1.
The dispersions of the AuNPs were quite stable and similar between al NPs, with almost
no variations in the hydrodynamic sizes. The zeta potential values confirmed the charge of
the coating of the NPs and supported their stability in a suspension.

Table 1. Physical–chemical characterization of AuNP.

Cationic Anionic Neutral

Hydrodynamic diameter (nm) a (DLS) 5.46 ± 2.840 4.71 ± 0.900 2.71 ± 0.620
Zeta potential (mV) a (ELS) 35.8 ± 1.76 −26.4 ± 1.60 −3.18 ± 1.34

a Mean ± standard deviation. DLS: dynamic light scattering, ELS: electrophoretic light scattering.

3.2. Morphological Alterations after AuNP Exposure

No morphological changes in the neuronal cells were found after treatment with
anionic or cationic AuNPs for the selected exposure times. In the case of neutral AuNPs,
morphological alterations were only detected after 24 h of exposure at the highest concen-
trations and included rounding of the cells, loss of neurites, and slight detaching from the
surface. Example photomicrographs are shown in Figure 1.

Mater. Proc. 2023, 14, x 2 of 6 
 

 

The three types of AuNPs used in the present study were newly synthesized follow-

ing the method reported by Brust et al. [8]. The average hydrodynamic size and zeta po-

tential of NPs in neuron culture medium were determined by dynamic light scattering 

(DLS) and electrophoretic light scattering (ELS), respectively, using a Zetasizer Nano-ZS 

(model ZEN 3600, Malvern Instruments Lt, Malvern, UK). 

Morphological analysis was performed by employing an inverted light microscope 

(Nikon Instruments Inc., Melville, NY, USA). Phase-contrast photographs of control and 

AuNP-treated cells were obtained. The NP effects on viability were evaluated by MTT 

assay [9] using a SPECTROstar Nano (BMG Labtech, Ortenberg, Germany) microplate 

reader, and analysis of H2AX phosphorylation was carried out by flow cytometry [10] in 

a FACScalibur cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). For all these ex-

periments, SH-SY5Y cells were incubated with the three different AuNPs at a range of 

concentrations or the control solutions for 3 or 24 h. 

Differences among groups were statistically analysed by the Kruskal–Wallis test, and 

Mann–Whitney U-test for two-by-two comparisons, by employing the SPSS for Windows 

statistical package (version 20.0, IBM, Armonk, NY, USA). The associations between two 

variables were analysed by Pearson’s correlation. The experimental data are expressed as 

mean ± standard error and a p-value of <0.05 was considered significant. All experiments 

were run at least in triplicate. 

3. Results and Discussion 

3.1. Nanoparticle Characterization and Cellular Uptake 

The AuNPs employed in the present study are 2–4 nm spherical NPs with a positive 

(cationic), negative (anionic), or neutral surface charge. The results obtained from the anal-

ysis of the hydrodynamic size and zeta potential of these NPs are collected in Table 1. The 

dispersions of the AuNPs were quite stable and similar between al NPs, with almost no 

variations in the hydrodynamic sizes. The zeta potential values confirmed the charge of 

the coating of the NPs and supported their stability in a suspension. 

Table 1. Physical–chemical characterization of AuNP. 

 Cationic Anionic Neutral 

Hydrodynamic diameter (nm) a (DLS) 5.46 ± 2.840 4.71 ± 0.900 2.71 ± 0.620 

Zeta potential (mV) a (ELS) 35.8 ± 1.76 −26.4 ± 1.60 −3.18 ± 1.34 
a Mean ± standard deviation. DLS: dynamic light scattering, ELS: electrophoretic light scattering. 

3.2. Morphological Alterations after AuNP Exposure 

No morphological changes in the neuronal cells were found after treatment with an-

ionic or cationic AuNPs for the selected exposure times. In the case of neutral AuNPs, 

morphological alterations were only detected after 24 h of exposure at the highest concen-

trations and included rounding of the cells, loss of neurites, and slight detaching from the 

surface. Example photomicrographs are shown in Figure 1. 

 

Figure 1. SH-SY5Y neuronal cells without treatment: (a) and treated with 0.5 µg/mL (b) and
50 µg/mL (c) of neutral AuNPs.
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3.3. Viability of Neuronal Cells Exposed to AuNPs

The effects of AuNP exposure on the viability of neuronal SH-5YSY cells were eval-
uated using the MTT assay. Following Costa et al. [11], a modified MTT protocol was
employed to avoid any potential interference of the NPs. The results from these exper-
iments are shown in Figures 2–4. Although slight but significant decreases in viability
were observed for anionic AuNP treatments (Figure 2), they cannot be considered cytotoxic
effects according to ISO 10993-5 [12], since the reductions in cell viability were not higher
than 30%.
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Figure 2. Cell viability of human neuroblastoma SH-SY5Y cells after exposure to anionic AuNPs for
3 and 24 h. PC: positive control (1% Triton 100-X). * p < 0.05, significant difference compared to the
corresponding negative control.
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Figure 3. Cell viability of human neuroblastoma SH-SY5Y cells after exposure to cationic AuNPs for
3 and 24 h. PC: positive control (1% Triton 100-X). * p < 0.05, significant difference compared to the
corresponding negative control.
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Figure 4. Cell viability of human neuroblastoma SH-SY5Y cells after exposure to neutral AuNPs for 3
and 24 h. PC: positive control (1% Triton 100-X). * p < 0.05, significant difference compared to the
corresponding negative control.

A decrease in cell viability was observed after cationic AuNP treatment at the highest
doses with both exposure times (Figure 3), reaching values of 70% and 60% viability at the
highest concentration employed after 3 or 24 h, respectively. However, a statistically significant
dose–response relationship was only found for the 24 h treatment (r = −0.795; p < 0.01).

For neutral AuNP exposure, significant decreases in cellular viability compared to the
negative control were found only after 24 h of treatment, with values around 70–80% at all
concentrations tested (Figure 4).

3.4. Genotoxic Effects of AuNP

The results obtained from the analysis of H2AX phosphorylation of neuronal SH-
SY5Y cells exposed to anionic, cationic, or neutral AuNP are shown in Figures 5–7. Slight
increases were observed in the percentage of cells with γH2AX at all the concentrations
tested for anionic AuNPs, although the values registered always maintained below 10%
(Figure 5).
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Figure 5. Results from yH2AX analysis in SH-SY5Y cells exposed to anionic AuNPs for 3 and 24 h.
PC: positive control (1 µg/mL BLM). * p < 0.05, ** p < 0.01, significant difference compared to the
corresponding negative control.
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Figure 6. Results from yH2AX analysis in SH-SY5Y cells exposed to cationic AuNPs for 3 and 24 h.
PC: positive control (1 µg/mL BLM). ** p < 0.01, significant difference compared to the corresponding
negative control.
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Figure 7. Results from yH2AX analysis in SH-SY5Y cells exposed to neutral AuNPs for 3 and 24 h.
PC: positive control (1 µg/mL BLM). ** p < 0.01, significant difference compared to the corresponding
negative control.

Dose-dependent increases in the percentage of cells with γH2AX were observed in the
neuronal cells treated with cationic AuNPs after both exposure times (3 h: r = 0.692; p < 0.01;
24 h: r = 0.900; p < 0.01) although the effects were more notable after 24 h (Figure 6).

Finally, significant increases in γH2AX levels were obtained for all conditions tested
when SH-SY5Y cells were exposed to neutral AuNPs (Figure 7). Concentration-dependent
relationships were also observed in this case for both exposure times (3 h: r = 0.824; p < 0.01;
24 h: r = 0.884; p < 0.01).

4. Conclusions

The results obtained from this work highlight the relevance of surface charge on AuNP
toxicological behaviours. In particular, anionic and neutral AuNPs did not cause cytotoxic
effects, while cationic nanoparticles showed cytotoxicity at the longest exposure time.
Furthermore, cationic and neutral AuNPs showed only a moderate genotoxic potential
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after 24 h of exposure, while those with a negative charge did not induce a remarkable
amount of double-strand breaks in DNA under any condition tested.
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