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Abstract: The use of infrared thermography presents unique perspectives in imaging of artifacts to
help interrogate their surface and subsurface characteristics, highlight deviations and detect contrast.
This research capitalizes on active and passive thermal imagery along with advanced machine
learning-based algorithms for pre- and post-processing of acquired scans. Such codes operate
efficiently (compress data) to help link the observed temperature variations and the thermophysical
parameters of targeted samples. One such processing modality is dictionary learning, which infers a
“frame dictionary” to help represent the scans as linear combinations of a small set of features, thus
training data to show a sparse representation. This technique (along factorization and component
analysis-based methods) was used in current research on ancient polychrome marquetries aimed at
detecting aging anomalies. The presented research is unique in terms of the targeted samples and the
applied approaches and should provide specific guidance to similar domains.

Keywords: infrared thermography; cultural heritage; image processing; defect detection; PCA using
randomized SVD; NMF; fast ICA; mini batch sparse PCA; factor analysis; dictionary learning

1. Introduction

The structures with decorated surfaces due to their very nature and historical context
(material, assembly, and aging), present a number of challenges specific to their diagnosis
and restoration, which limit the adoption of standard methods and known techniques
borrowed from other applications. As the strict fulfilment of established guidelines is
necessary to ensure both rational analyses and repair approaches, which are appropriate
to the cultural context. Consequently, the formation of the multidisciplinary team of
experts, is not trivial, as it should be guided by the domains, the scale, and the sciences
involved in each assessment and restoration step. This typically starts by the visual
inspection/evaluation of the work of art under analysis [1]. Thermographic analyses
offer imaging perspectives across an electromagnetic spectrum (i.e., the infrared band)
that is beyond the visible, thus furnishing new information and exposing new material
structures (delaminating, splits, inclusions, etc.), otherwise undetectable by the naked
eye [2]. Furthermore, thermographic images are coupled nowadays to efficient pre and
post processing routines, to help increase the contrast and defects’ detectability in real-
time and at larger frames (with higher resolutions). For the current application on the
samples under test (SUT), these techniques will be adjusted to highlight the variations
of the SUT constituting materials’ via their thermophysical properties and structural
integrity. Thus, providing a visual representation of the SUT structure and its unique
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aging, in passive [3] and active [4] modes of thermography. Several techniques based on
physics (of heat conduction), mathematics, and/or statistics have recently been proposed
within the thermographic research field, such as principal components thermography [5],
thermographic signal reconstruction [6], dynamic thermal tomography [7], higher order
statistics thermography [8], among many other [9–11]. On the other hand, recent advances
in machine learning can help process, discern and interpret images thoroughly and in
real-time. When applied to image processing, artificial intelligence (AI) may, e.g., detect
and recognize objects and patterns in images. Most effective machine learning models
for image processing use neural networks and deep learning. Recently, machine learning
techniques found greater adoption in the infrared thermography processing context [12].
The contribution from current work can be considered novel as a data mining search on
Scopus® website [13], via the combined keywords of “machine learning” + “thermography”
+ “cultural heritage”, resulted in “No documents were found”. Thus, the current research
can present a pioneering approach to obtaining clear defect maps of ancient marquetries
using thermography, specifically via a controlled heating regime [14]. Furthermore, the
unique application of dictionary learning (DL) to raw thermal images is compared against
other advanced algorithms described in the next section [15]. For the sake of brevity, only
the main DL results will be shown and discussed in Section 3; the remaining ones will be
illustrated during the virtual presentation.

2. Algorithms for Thermal Image Processing

A test campaign, in reflection mode, used a halogen lamp rated at 230 V and 2.5 kW
synchronized to an Indium Antimonide InSb thermal camera (commercial name GF309
from FLIR®) to produce 250 thermal images in total, at a frame rate of 25 Hz. The following
algorithms were then applied to the acquired scans.

2.1. Dictionary Learning (DL)

It is a recent modality of signal processing and machine learning that infers a sparse
representation of the input thermal images using a DL approach. The sparser the represen-
tation, the better the dictionary [15]. A common setup for the dictionary learning problem
starts with access to a training set, a collection of training vectors, each of length N. This
training set may be finite, and then the training vectors are usually collected as columns in
a matrix X of size NxL, or of infinite size. For the finite case, the aim of DL is to find both a
dictionary, D, of size NxK, and a corresponding coefficient matrix W of size KxL such that
the representation error, R = X − DW, is minimized and W fulfill some sparseness criterion.
The DL problem can be formulated as an optimization problem with respect to W and D.

2.2. Non-Negative Matrix Factorization (NMF)

By combining attributes, NMF can produce, e.g., meaningful patterns. Each feature
created by NMF is a linear combination of the original attribute set. Thus, each feature will
have a set of coefficients that measure the weightage of each attribute on the feature. Such
that, there is a separate coefficient for each numerical attribute and for each distinct value
of each categorical attribute. The coefficients are all non-negative, hence the name [16].

2.3. Fast Independent Component Analysis (ICA)

The ICA approach uses statistical independence of the source input to solve the blind
signal separation problems. The fast ICA algorithm improves efficiency of ICA. Here, the
independent components can be estimated one by one, which is roughly equivalent to
conducting projection pursuit [17].

2.4. Mini Batch Sparse Principal Component Analysis (PCA)

Sparse PCA is a variant of PCA. Consequently, Mini Batch Sparse PCA is a variant
of Sparse PCA that is faster yet less accurate. The increased speed is reached by iterating
over small chunks of the set of features, for a defined number of iterations. Therefore,
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Mini Batch Sparse PCA performs the dimensionality reduction process using a part of the
sample features and at a given number of iterations, to help solve the problem of slow
feature decomposition in large samples. It may require tuning for the L1 regularization
parameters [18].

2.5. Factor Analysis (FA)

The FA model allows information reduction from a larger set of variables into a smaller
one. Such variables are termed “latent variables”. FA is based on the common factor model.
FA measures the impact of one specific factor on the measured variables. In short, the
mathematical difference between PCA and FA is the use of specific factors for each original
variable [19].

3. Description of the Marquetry Samples and Main DL Results Obtained

The thickness of the marquetries (19th century) called, for simplicity, Boy and Girl
was ~0.5 mm. Multicolored tesserae were applied by means of an adhesive (presumably, a
protein glue) on a solid, planar and visible support realized in fruit wood (Figure 1). In
the Boy sample (Figure 1a), large detachments can be revealed along with a deformation
inherent to tesserae of the ground and of the arm. As for the Girl sample, a lack of tesserae
that make up the marquetry is evident on the feet, ground, and left arm (Figure 1b). More
information regarding the marquetry samples can be found in [14].
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particular, by comparing the marquetries, the Girl sample has more critical splits across 
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ruled the results an added value and sufficiently accurate for moving to the next step, i.e., 
the restoration. 
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Figure 1. Marquetry samples: (a) Boy, and (b) Girl.

In both cases, DL was able to detect several splitting between the support layer and
tesserae, as well as highlighting the areas in which tesserae are missing (Figure 2a,b). In
particular, by comparing the marquetries, the Girl sample has more critical splits across
the border of the oval frame. It should also be noted that the detachment at the bottom,
depicted in the Boy sample, appears larger relative to the rest of the image. The restorer
ruled the results an added value and sufficiently accurate for moving to the next step, i.e.,
the restoration.
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4. Conclusions

Several advanced algorithms were applied to raw thermal images acquired on two
ancient marquetries with the aim to detect different types of defects. For the sake of brevity,
here the authors reported and discussed only the DL results; the remaining presented
techniques and algorithms (from Section 2) will be shown during the virtual presentation.
The results obtained will help the restoration efforts in repairing similar cultural artifacts.
Supervised methods will be used in the future for additional comparative analyses.
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