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Abstract

:

We considered a primal-mixed method for the Darcy–Forchheimer boundary value problem. This model arises in fluid mechanics through porous media at high velocities. We developed an a posteriori error analysis of residual type and derived a simple a posteriori error indicator. We proved that this indicator is reliable and locally efficient. We show a numerical experiment that confirms the theoretical results.
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1. Introduction


The Darcy–Forchheimer model constitutes an improvement of the Darcy model which can be used when the velocity is high [1]. It is useful for simulating several physical phenomena, remarkably including fluid motion through porous media, as in petroleum reservoirs, water aquifers, blood in tissues or graphene nanoparticles through permeable materials. Let  Ω  be a bounded, simply connected domain in    R  2   with a Lipschitz-continuous boundary   ∂ Ω  . The problem reads as follows: given known functions  g  and f, find the velocity  u  and the pressure p such that


        μ ρ   K  − 1   u +  β ρ   | u |  u + ∇ p     =    g  in  Ω ,       ∇ · u    =    f  in  Ω ,       u · n    =    0  on  ∂ Ω ,      



(1)




where  μ  is the dynamic viscosity,  ρ  denotes the fluid density,  β  is the Forchheimer number K denotes the permeability tensor,  g  represents gravity, f is compressibility, and  n  is the unit outward normal vector to   ∂ Ω  .



We make use of the finite element method to approximate the solution of problem (1). We present the approach by Girault and Wheeler [1], who introduced the primal formulation, in which the term   ∇ · u   undergoes weakening by integration by parts. It is shown in [1] that problem (1) has a unique solution in the space   X × M  , where   X : =   [  L 3   ( Ω )  ]  2    and   M : =  W  1 , 3 / 2    ( Ω )  ∩  L 0 2   ( Ω )    (we use the standard notations for Lebesgue and Sobolev spaces).




2. Discrete Problem


To pose a discrete problem, we can use a family    {  T h  }   h > 0    of conforming triangulations to divide the domain   Ω ¯   such that    Ω ¯  =  ⋃  T ∈  T h    T ,  ∀ h ,   where   h > 0   represents the mesh size. Here we follow [2] and choose the following conforming discrete subspaces of X and M, respectively:


      X h  : =   v h  ∈   [  L 2   ( Ω )  ]  2  ; ∀ T ∈  T h  ,  v h    |  T  ∈   [  P 0   ( T )  ]  2   ⊂ X  ,        M h  : =  Q h 1  ∩  L 0 2   ( Ω )  ⊂ M  ,     








where    Q h 1  : =   q h  ∈  C 0   (  Ω ¯  )  ; ∀ T ∈  T h  ,  q h    |  T  ∈  P 1   ( T )   .  



Then, the discrete problem consists in finding    (  u h  ,  p h  )  ∈  X h  ×  M h    such that


        ∫ Ω    μ ρ   K  − 1    u h  +  β ρ   |  u h  |   u h   ·  v h   d x +  ∫ Ω  ∇  p h  ·  v h   d x     =      ∫ Ω  g ·  v h   d x ,  ∀  v h  ∈  X h  ,          ∫ Ω  ∇  q h  ·  u h   d x     =     −  ∫ Ω   q h  f  d x ,  ∀  q h  ∈  M h  .       



(2)







It is shown in [2] that problem (2) has a unique solution and that the sequence    {  (  u h  ,  p h  )  }  h   converges to the exact solution of problem (1) in   X × M  . Furthermore, under additional regularity assumptions on the exact solution, some error estimates were derived in [2].




3. Novel Error Estimator and Adaptive Algorithm


We denote by   E Ω  ,   E  ∂ Ω    and   E T  , respectively, the sets of edges e belonging to the interior domain, the boundary and the element T;   h e   denotes the length of a particular edge e; and   h T   is the diameter of a given element T. We denote by    J e   ( v )    the jump of v across the edge e in the direction of   n e  , a fixed normal vector to side e. Finally, we use the operator    A ˜   (  u h  ,  p h  )  : =  μ ρ   K  − 1    u h  +  β ρ   |  u h  |   u h  + ∇  p h  − g  .



On every triangle   T ∈  T h   , we propose the following a posteriori error indicator:


        θ T  = (  h T 2   | |    A ˜   (  u h  ,  p h  )     | |    [  L 2   ( T )  ]  2  2  +  | | ∇  ·  u h  −   f | |    L 2   ( T )   2  +  1 2   ∑  e ∈  E Ω  ∩ ∂ T    h T  − 1    | |   J e   (  u h  · n )    | |    L 2   ( e )   2        +  ∑  e ∈  E  ∂ Ω   ∩ ∂ T    h T  − 1    | |   u h  · n   | |    L 2   ( e )   2   )  1 / 2        











We also define the global a posteriori error indicator    θ : =    ∑  T ∈  T h     θ T 2    1 / 2     .

Theorem 1.

For the primal-mixed method (2), there exists a positive constant   C 1  , independent of h, and a positive constant   C 2  , independent of h and T, such that


   | |   ( u −  u h  , p −  p h  )    | |   X × M   ≤  C 1  θ ,   










   θ T  ≤  C 2   | |   ( u −  u h  , p −  p h  )    | |     [  L 3   (  w T  )  ]  2  ×  W  1 , 3 / 2    (  w T  )     ,  ∀  T ∈  T h   ,  












where    w T  =  ⋃   E T  ∩  E  T ′   ≠    T ′   .



We propose an adaptive algorithm based on the a posteriori error indicator  θ . Given an initial mesh, we follow the iterative procedure described in Figure 1. Each new mesh is generated as suggested in [3].




4. Numerical Experiment


We performed several simulations in FreeFem++ [4], validating the theoretical results. Here we select an example on an L-shaped domain,   Ω =   ( − 1 , 1 )  2    [ 0 , 1 ]  2   , and focus on the data f and  g  so that the exact solution is


  p  ( x , y )  =  1  x − 1.1    ,  u  ( x , y )  =      exp ( x ) sin ( y )       exp ( x ) cos ( y )       .  



(3)







Thus the solution has a singularity in pressure close to the line   x = 1  . Figure 2 shows the mesh refinement by the adaptive algorithm. Figure 3, bottom, represents the evolution with respect to degrees of freedom (DOF) of error and indicator; on the right, we can observe the evolution of the efficiency index with DOF.




5. Discussion


The adaptive algorithm was tested on an example with a singularity. From Figure 2 we can observe that the algorithm refined the mesh near the singularity, as expected. Since it is an academic example with a known solution, we could compute the exact error. The graphs in Figure 3 confirm that the error was lower for the adaptive refinement. Additionally, since the exact error and estimator followed close to parallel lines, we confirm that the indicator gives a consistent measure of the error. This could also be checked by the efficiency index, which is the ratio of indicator to exact total error.
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Figure 1. Adaptive algorithm flux diagram. 






Figure 1. Adaptive algorithm flux diagram.
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Figure 2. Example 1. Initial mesh (270 DOF) on the (top); intermediate adapted mesh with 1512 DOF on the (bottom). 






Figure 2. Example 1. Initial mesh (270 DOF) on the (top); intermediate adapted mesh with 1512 DOF on the (bottom).
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Figure 3. Example 1. (Top): Error and indicator evolution vs. DOF. (Bottom): Efficiency index vs. DOF. 






Figure 3. Example 1. (Top): Error and indicator evolution vs. DOF. (Bottom): Efficiency index vs. DOF.
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