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Abstract: This study presents a soft-computing-based method for determining polymer pipelines’
creep function parameters (CFPs) and pressure wave speeds (PWSs) through transient flow analysis.
To this end, first, a numerical model for transient flow in polymer pipes was developed in the time
domain. Then, by considering a pipeline with a specific geometry, 2000 transient flow signals were
generated for different CFPs and PWSs. The amplitudes obtained by transforming the time-domain
pressure signals to the frequency domain using the fast Fourier transform algorithm are the inputs
for an artificial neural network model. The results showed that the proposed approach accurately
estimated the creep function of the polymer pipes.

Keywords: viscoelasticity; creep function; hydraulic transient; soft computing model

1. Introduction

Accurately identifying pipe material properties is important to understand the dy-
namic responses of pipes under flowing conditions and to implement advanced hydraulic
analysis methods for pipe defect detection [1,2]. In some research, the creep function is
determined by examining the resonance frequencies of the frequency domain pressure
signal [3,4]. Also, in another study, the creep function parameters were estimated using the
zero-crossing time of the time domain pressure signal [5].

This research aims to introduce a transient-signal-based artificial neural network
(ANN) framework that estimates the creep function for viscoelastic pipes.

2. Materials and Methods
2.1. Transient Flow Governing Equations for Polymer Pipes

For polymer pipes, the continuity and momentum equations are Equations (1) and
(2) [6],

∂H
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+
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∂Q
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+
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dt
= 0 (1)
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+
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gA
dQ
dt

+ (h f s + h f u) = 0, (2)

where Q is the discharge, H is the piezometric head, g is the gravity acceleration, A is the
area of the pipe cross-section, a is the pressure wave speed, εr is retarded strain, t is time, x
is coordinate along the pipe axis, and h f s and h f u are steady and unsteady friction losses
per unit length, respectively.
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2.2. Multilayer Perceptron

The Multilayer Perceptron is an ANN that imitates the biological nervous system.
It has an input layer, hidden layers, and an output layer. Data flow through the layers,
computations are performed, and outputs are generated. The final hidden layer’s outputs
are passed to the output layer for predictions or results.

2.3. CFP and PWS Estimation Based on Transient-Pressure-Based ANN Model

In this approach, a numerical model was developed in the time domain to analyze
the behavior of viscoelastic pipes. A pressure signal dataset was generated next to the
transient generation valve. The dataset encompassed various jk parameters ranging from 0
to 10 × 10−10 and different a values between 200 and 600 m/s. In this study, three elements
were considered for the Kelvin–Voigt model, and the retardation times were set as constant
values of 0.05, 0.5, and 5 s. A total of 2000 simulations were performed. Subsequently, the
FFT algorithm transformed these signals from the time domain to the frequency domain.
The pipe system utilized in this research consists of a viscoelastic pipe with a length of
300 m, a diameter of 5.06 cm, and a thickness of 6.25 mm. The flow rate within the pipeline
is maintained at 1 L/s for all the generated data.

The initial 300 data points were selected as inputs for the ANN model from the
frequency domain pressure signals. Out of the entire dataset of 2000 records, 70% (1400 data)
were randomly chosen for training, 15% (300 data) for validation, and the remaining
15% (300 data) for testing the model. After training the model and assessing its accuracy
using statistical parameters, its performance was further evaluated in detail using two
additional datasets. Figure 1 shows the overall workflow of the methodology utilized.
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Figure 1. Proposed ANN-based CFP and PWS prediction.

3. Results and Discussion

Figure 2 shows the residual and prediction errors of the CFPs and PWSs for all three
datasets: training, validation, and testing. The results indicate that a is predicted with
greater accuracy than the jk parameters. All the PWSs are predicted with errors of less than
3%. Regarding the prediction results for the three jk parameters, it can be observed that, for
parameter j1, more than 95% of the data have an error of less than 5%. For j2, this value is
80%, and, for parameter j3, it is 85%.
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error of 6% and an average of 0.4% for both tests. Additionally, comparing the original 
and predicted creep functions reveals that the trained ANN model estimation accuracy is 
appropriate. 
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Figure 3. (a) Time; (b) frequency domain pressure signals of Test #1 and Test #2. 

Figure 2. Training, validation, and testing residuals and absolute errors for (a) j1; (b) j2; (c) j3; (d) a.

Two new tests are considered to evaluate the trained ANN model. In Test #1, the
values of jk and a are as follows: j1, j2, j3 = 1× 10−10 Pa−1 and a = 400 m/s. In Test #2, they
are as follows: j1 = 0.2 × 10−10 Pa−1, j1 = 0.8 × 10−10 Pa−1, j1 = 1.8 × 10−10 Pa−1, and
a = 450 m/s. The time and frequency domain pressure signals of these two tests are shown
in Figure 3. Figure 4 displays the original and predicted values of the CFPs and PWSs for
both tests. According to the figure, the jk values are predicted with an average error of 6%
and an average of 0.4% for both tests. Additionally, comparing the original and predicted
creep functions reveals that the trained ANN model estimation accuracy is appropriate.
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Figure 4. Comparison between original data and ANN results for (a) Test #1; (b) Test #2. 

4. Conclusions 
This research presents a methodology utilizing ANN and transient pressure infor-

mation as the inputs to determine the creep function of polymer pipes. The ANN model 
was trained using a dataset generated from a hydraulic transient solver. The input to the 
ANN model consisted of the transient pressure data next to the transient valve in the fre-
quency domain. The accuracy of the trained model was then assessed using statistical pa-
rameters. Subsequently, the trained model’s accuracy in estimating the CFPs and PWSs 
was evaluated using two new examples. The results demonstrated that the error in esti-
mating the creep compliance coefficients for both examples was less than 11%, while the 
error in estimating the PWSs was less than 0.4%. The ANN model exhibited excellent ac-
curacy in predicting creep function. 
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4. Conclusions

This research presents a methodology utilizing ANN and transient pressure informa-
tion as the inputs to determine the creep function of polymer pipes. The ANN model was
trained using a dataset generated from a hydraulic transient solver. The input to the ANN
model consisted of the transient pressure data next to the transient valve in the frequency
domain. The accuracy of the trained model was then assessed using statistical parameters.
Subsequently, the trained model’s accuracy in estimating the CFPs and PWSs was evaluated
using two new examples. The results demonstrated that the error in estimating the creep
compliance coefficients for both examples was less than 11%, while the error in estimating
the PWSs was less than 0.4%. The ANN model exhibited excellent accuracy in predicting
creep function.
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