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Abstract: The goal of 3D simulation in the apparel industry is highly relevant in terms of sustainability,
as the realistic visualization of textile drape and the drapability of textile surfaces plays a crucial
role in reducing textile waste and optimizing resource use. It is a matter not only of generating
photo-realistic images in 3D garment simulations, but also of making reliable predictions about the
physical behavior of textile materials in order to achieve realistic outcomes. The prerequisite for
3D garment simulation is the correct application of standardized simulation programs, which is
rarely accomplished in practice because the providers of 3D simulation software do not disclose
their simulation algorithms, making accurate analysis difficult. In this study, an objective image
comparison is carried out using the VStitcher simulation program as an example, which allows an
assessment of the value of the relevant material parameters. A drape test is used as a validation
method and the drape coefficient is calculated. Depending on the material and parameter settings,
drape coefficients between 0.1 and 10% and between 0.7 and 70% are determined. By modifying the
bending stiffness, the drape coefficient increases the most. By systematically varying and comparing
these parameters, a deeper understanding of their influence can be obtained. The most significant
effect on the drape coefficient (DC) is seen with increased bending stiffness, while changes in thickness,
elongation, and shear stiffness have a minimal effect. Increased fabric thickness has a greater effect on
appearance than on deformation. The digital parameters affect the simulation in much the same way
as the physical textile parameters affect the real material. With VStitcher, the desired fabric changes
are more effectively achieved by adjusting the bending stiffness and mass per area, while changes in
thickness, elongation, and shear stiffness have little effect.

Keywords: drapability; drape coefficient; Cusick drape test; VStitcher simulation; physical behavior
of textiles; 3D apparel simulation; apparel sustainability; textile waste reduction; 3D fabric
simulation; VStitcher

1. Introduction

The importance of garment simulation in the apparel industry is constantly increasing,
and if the three-dimensional representation accurately reflects reality, it could transform
the apparel industry [1]. Especially in the area of fit analysis and optimization, 3D garment
simulation has the greatest potential for optimizing development processes and conserving
resources. The realistic representation of textile surface structures in 3D simulations as
a function of fabric properties remains a fundamental challenge, since small deviations
in the fabric parameters can have a significant impact on the accuracy of the simulation
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results, which requires precise characterization and calibration of the fabric used [2,3]. The
apparel industry utilizes diverse 3D simulation software, including solutions from vendors
such as Opitex’s “3D Runway Designer”, Browzwear’s “V-stitcher”, Lectra’s “3D-Fit”,
and Technoa’s “i-Designer”. Among these, Browzwear’s VStitcher is particularly widely
adopted. In addition, achieving realistic simulations in the apparel industry remains a
challenge, as there are still significant differences between real and simulated garments.

Deformation behavior is an important factor in the selection of fabrics for the develop-
ment of apparel products, as it affects the appearance and fit on the body, and realistic 3D
simulations of garments that accurately reflect fabric parameters can lead to more efficient
design processes, reduced waste, and improved longevity of garments, ultimately con-
tributing to greater sustainability in the apparel industry [1,2]. Factors such as deformation
behavior are generally divided into textile drape and drapability, both of which have a
strong impact on the quality of the product as they determine how the fabric falls and
conforms to the body. This is important because achieving accurate simulations of these
behaviors ensures a higher quality product in terms of fit, comfort, and esthetics, reducing
the need for physical prototypes and minimizing waste [4]. Generally, the deformation
behavior can be described by the following parameters: drape coefficient (DC), Drape
Distance Ratio (DDR), Fold Depth Index (FDI), Node Number (NN) and mechanical prop-
erties [5,6]. The drape coefficient (DC) is the ratio of the projected area of a fabric sample to
its undraped area, minus the area of the supporting disk, while the Drape Distance Ratio
(DDR) measures the reduction in the annular portion due to draping. The number of nodes
(n) is determined by counting the folded apexes formed over the disk, and the Fold Depth
Index (FDI) indicates the sharpness of these nodes [5,6]. The drape of the fabric is critically
influenced by parameters such as mass per area, thickness, bending, elongation, and shear.
Additionally, weave type and the linear density of the warp and weft significantly affect the
fabric’s behavior and are considered essential for simulation purposes [7–10]. By gradually
changing one of the parameters while keeping the other parameters and the resulting drape
coefficients constant, conclusions can be drawn about their influence on the simulation.

This paper focuses on the drape coefficient as a numerical indicator of wrinkling
during textile draping. Three different cotton fabrics in plain, twill, and satin weave were
tested. In the test series, the value of the textile physical fabric parameters was analyzed
in the simulation. The results of the draping tests were implemented in the VStitcher
simulation program, which was used to analyze the simulation. In this study, the effects
of various fabric parameters on the drapability of textiles were investigated using the
simulation program VStitcher. The results show that increased bending stiffness has a
significant influence on the drape coefficient, while changes in thickness, elongation, and
shear have only minimal effects. The aim of this study was to evaluate the influence of
different parameters on the virtual drape coefficient and to determine which parameter has
the biggest impact on the virtual textile drape. By systematically varying and comparing the
material parameters, a deeper understanding of their influence can be gained. This study
emphasizes the importance of the textile physical material parameters for the simulation.

2. Textile Drape

Textile drape describes the ability of fabrics to deform three-dimensionally under their
own weight. It has a significant influence on the esthetics and functionality of textiles [11]. It
cannot be considered in isolation, but must be viewed in conjunction with mechanical fabric
parameters such as bending stiffness, elongation, and shear stiffness. These, in turn, depend
on the type of fiber, the construction properties of the fabric, and the finishing methods
used [12]. The textile drape plays an important role in the development of apparel [5]. It can
be quantitatively evaluated with the help of parameters such as the drape coefficient and
the drape spacing ratio. These parameters are determined and analyzed using digital image
processing techniques. The results can provide the apparel industry with important findings
to support simulation-based product development and to improve communication within
the product development process [5]. The textile drape is determined using a drape test.
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While the bending stiffness measurement only records the two-dimensional deformation
of textiles, the drape test makes it possible to analyze the three-dimensional formation of
folds [13]. This produces a drape image that can be visually assessed and described by
specifying the number of pleats, the shape of the pleats, and the orientation of the pleats. A
numerical analysis of the textile drape is carried out by determining the drape coefficient
(DC). It describes the extent of the crease formation, provides an objective evaluation of the
textile drape [12], and is the difference between a deformed and a non-deformed surface
of the textile fabric. The percentage ratio of the projected area of the draped fabric to the
undeformed area of the fabric before draping is the basis for calculating the DC [14]. A low
DC indicates a fabric that deforms easily, while a higher DC indicates less deformation [15].
It should be noted that the DC alone is not sufficient to fully describe the appearance of
a draped fabric. Due to various geometric factors, such as the number of knots and the
curvature of the draped fabric, fabrics with the same DC can still look different [6,16]. The
Cusick drape tester was developed to determine the drape coefficient [2]. In an analog
procedure, the shadows of undraped and draped fabric are projected onto a round piece of
paper, drawn, and cut out. The ratio of the masses of the cut-out papers is then formed and
the draping coefficient is calculated [17]. Nowadays, image processing technologies are
mainly used to capture the shadows as a digital image, which is used for computer-aided
processing of the data. In addition to the DC, other parameters, such as the Drape Distance
Ratio (DDR), the amplitude, the Fold Depth Index (FDI), and the number of knots, can be
determined for a more comprehensive understanding of the draping of fabrics [5,6,18,19].
These parameters provide a robust, multi-dimensional view of the drape behavior of a
fabric and thus offer valuable insights for product development and production [5].

3. Materials and Methods

VStitcher is a 3D modeling software developed for pattern makers and technical
designers by the software company Browzwear (Browzwear Solutions Pte. Ltd., version
2021.2.0 51910, Singapore, Singapore) and was used in this study. The digital ecosystem
includes the Fabric Analyzer (FAB), a proprietary device for recording and digitizing the
physical properties of fabrics [20]. Using the FAB makes it is possible to rationalize the
design process and increase simulation accuracy [21]. A fabric analysis using the FAB was
carried out on three test strips, which were cut in the warp direction, weft direction, and
45◦ direction. The physical analysis of the fabric consisted of determining the mass per unit
area, thickness, bending stiffness, elongation, and shear stiffness [21]. The software used
for the calculation of the drape coefficient was MATLAB (The MathWorks, Inc., version
R2023a 9.14.0, Natick, MA, USA). The basis for the series of tests was a Cusick drape test,
which was carried out in accordance with DIN EN ISO 9073-9 [7] and provided an image
of the draping of the fabric and the draping coefficient. Table 1 shows the fabric properties
of the three tested fabrics. Vizoo GmbH, Munich, Germany, was utilized to record the
necessary textile physical fabric parameters using the FAB, and these parameters were
provided digitally for use in the simulation (see Figure 1).
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Table 1. Tested fabrics.

Code Microscopic
Photography

Weave
Construction

Warp/Weft Thread
Density per
Centimeter

Mass per Unit
Area (g/m²) Composition

M05
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4. Results and Discussion
4.1. Virtual Simulation of Draping Behavior with VStitcher

The Cusick drape test was integrated into the VStitcher simulation system to simulate
the virtual drape behavior. The test conditions were based on [DIN] [7] specifications in
order to ensure comparable results. This concerned the geometries of the samples and
test specimens, characteristic values for positioning and fixing the sample over the test
specimen, camera and lighting settings, and specifications for rendering. A description of
the test procedure ensures the reproducibility of the method.

4.2. Creating Grayscale and Binary Images and Calculating the Drape Coefficient Using MATLAB

There are various methods of calculating the drape coefficient, but an accurate and
fast approach is to use an image analysis technique based on the number of pixels. This
involves first converting the virtual drop images into grayscale and then into binary images.
The grayscale value represents the brightness of a pixel, independent of the colors [21].
The threshold value is then determined, which defines the brightness at which the pixel
color changes from black to white. By reducing the colors to black and white, the software
can process these two colors as 0 and 1, respectively, and enable calculations based on the
number of pixels. The software used was MATLAB (The MathWorks, Inc., version R2023a
9.14.0: Natick, MA, USA).

Intervals for calculating the modification values were defined on the basis of prelimi-
nary tests (see Table 2). Subsequently, only the value of one fabric parameter was modified
in the test, leaving the other parameters constant.

Table 2. Calculation of the intervals for modifying the digital fabric parameters.

Intervals Plus PlusPlus
Mass 50%, 100% 1.5 2

Thickness 200%, 400% 3 5
Bend 200%, 400% 3 5

Stretch 200%, 400% 3 5
Shear 400%, 800% 5 9
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The virtual drape test is based on the Cusick physical drape test (DIN EN ISO
9073_9 [7]). The three fabrics to be tested are implemented in VStitcher using the dig-
ital data previously determined with the FAB. For image evaluation, it is important to
ensure that the backing plate is visible, so the transparency of the fabrics is set to 50%. This
does not affect the behavior of the fabric. In order to determine the value of the fabric
parameters, the original digital fabric is duplicated and the material data of the duplicates
are modified according to previously defined grade rules. The result is a case image for
each fabric setting (see Figure 2).
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4.3. Calculation of Draping Coefficients Using Matlab

The MATLAB scripts were used to first convert the colored images into grayscale
images and then into binary images (black and white), and then to calculate the number of
pixels for different objects: the circular disk that serves as a measurement reference, the
non-draped fabric sample, and the draped fabric sample. The drapability coefficient was
then calculated from the number of pixels of these individual objects. When processing
the image files in MATLAB, file naming conventions needed to be defined and followed
consistently; otherwise, the program would run incorrectly. The calculations were divided
into three scripts (Table 3). The result of one script provided the input information for the
next script.

Table 3. Script structure in MATLAB.

Order Script Allocation

1. TexFall_AutoFolder Creating a folder structure
2. TexFall_Ref Calculation of the circular disk
3. TexFall_Fabric Calculation of the drainage coefficient

In the TexFall_AutoFolder script, a folder structure was created to store the calculated
values and images. In the TexFall_Ref script, the reference image of the circular disk was
converted into a binary image (See Figure 3). The software interprets the white areas
as objects and the black areas as background. This conversion enables the program to
calculate the number of pixels of the circular disc by determining the number of white
pixels. In addition, the diameter of the non-draped fabric sample is determined in the same
program. TexFall_Ref thus provides the basis for the further steps of the area calculation
in the project. In the TexFall_Fabric script, the case images generated in VStitcher were
converted into binary images. The pixels were then calculated for the area of the draped
fabric. The drape coefficient was calculated based on these results and the results from
TexFall_Ref. All values and generated images were saved in the folder structure defined in
the TexFall_AutoFolder script.
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The drape coefficients determined were plotted in diagrams against the respective
fabric parameters. For comparability, the values for the fabric parameters were normalized
to the maximum. Figure 4 shows a comparison of the parameters for each fabric.
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Figure 4. The drape coefficients of the samples: (a) M05; (b) M08; (c) M15. The diagrams show the
drape coefficients for each fabric with different parameters.

The most significant change in the drape coefficient can be seen when modifying the
bending. For material M05, the drape coefficient increases from 0.2 or 20% to 0.5 or 50%;
for material M08, from 0.4 or 40% to 0.7 or 70%; and for material M15, from 0.35 or 35% to
0.7 or 70%. The influence of the parameters mass, thickness, elongation, and shear on the
drape coefficient is much less pronounced. The drape coefficient is least influenced by the
modification of the parameters corner, elongation, and shear. The effect of the mass per
area parameter on the drape coefficient is also low, but a clearer trend can be seen than
with the previously mentioned parameters. The heavier the fabric, the lower the drape
coefficient. The biggest effect on the drape coefficient is the change in bending stiffness.
The graphs of all fabrics show a significantly higher drape coefficient when the bending
stiffness is increased.

The comparison of this current study with previous research highlights the pivotal
role of bending stiffness in influencing the drape coefficient of textiles. Specifically, our
findings demonstrate significant increases in the drape coefficient for materials M05, M08,
and M15, particularly with increased bending stiffness. The results of this study align with
the findings of Kim and Lee (using CLO 3D design software, CLO Virtual Fashion Co., Ltd.,
V.7.1), as well as those of Kyosev, both of which identified that modifying bending stiffness
has the most significant impact on the drape coefficient [22,23]. Pabst et al. further support
this conclusion, asserting that bending stiffness is likely the most critical parameter for
characterizing a specific textile [24]. Moreover, Morooka and Niwa, along with Matsudaira
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and Yang, emphasize the close correlation between mechanical properties, such as bending
stiffness, bending hysteresis, weight per unit area, shear stiffness, and shear hysteresis, and
the drape coefficient [25,26].

This current study aligns with the findings of Niwa and Seto, who noted that the
combination of bending hysteresis and weight per unit area significantly affects the drape
coefficient [27]. While other factors like mass, thickness, elongation, and shear were
examined, their influence on the drape coefficient was less pronounced. This reflects prior
research highlighting the predominant influence of bending stiffness and surface mass.
The results of this study using VStitcher software and virtual drape tests corroborate these
earlier studies, confirming that bending stiffness and mass are crucial determinants of the
drape coefficient in both real and simulated scenarios. In this study, VStitcher software
was used, yielding comparable results regarding bending stiffness, which reinforces the
importance of this parameter in both real and virtual fabric simulations. However, these
findings are crucial for the textile and apparel industry, as they provide valuable insights
for designing textiles with optimal drape characteristics, improving overall garment quality
and performance. This study has certain limitations, primarily due to the examination of
only three different textiles. The complexity of textiles, independent of a large number of
varying factors, such as fiber material, yarn construction, and textile structure, presents
inherent challenges. Moreover, factors such as finishing processes, textile aging, and others
previously mentioned, such as bending stiffness and mass per unit area, could also play a
significant role in influencing the outcomes for the simulation of textile drape. Consequently,
the results must be interpreted with caution, keeping in mind the multifaceted nature of
textile materials.

5. Conclusions and Outlook

This study provides insights into the handling of textile physical parameters in
VStitcher. It demonstrates that digital parameters affect the VStitcher simulation in much
the same way as physical textile parameters affect the actual fabric. The desired changes
in fabric behavior are best achieved by modifying bending stiffness and mass per area,
while changes in thickness, elongation, and shear stiffness have a minimal effect. Notably,
changes in thickness primarily affect visual appearance rather than deformation. Future
research should expand the dataset to include additional parameters such as fold charac-
teristics for more comprehensive conclusions. Standardization of testing using the Fabric
Analyzer (FAB) for VStitcher is recommended to ensure traceability and comparability,
ultimately improving the understanding and optimization of simulation algorithms and
highlighting the importance of physical textile parameters.
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