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Abstract: Foundry Degassing Units (FDU) are used for refining aluminum alloys. For an ideal
refining process using an FDU unit, it is necessary to select several parameters, which are linked to
each other. For a rotary impeller, we searched for several parameters, such as its optimal shape, speed
in the liquid alloy, and distance from the bottom of the refining ladle, where the aforementioned
parameters contribute to the overall wear and life of the rotor and, consequently, of the rotor shaft.
The Computational Fluid Dynamics (CFD) method can be used to determine the above-mentioned
parameters. This paper describes the particular steps of preparation of rotor geometry for the
subsequent setting up of the basic numerical model.

Keywords: aluminum refining; FDU unit; 3D CAD; Computational Fluid Dynamics (CFD)

1. Introduction

Foundry Degassing Unit (FDU) refining systems are largely used to refine aluminum
alloys. This unit is an automated metal treatment system for the degassing (hydrogen
removal) and the purification of aluminum alloys. The principle of refining consists in
forcing an inert gas using the rotor into the bottom part of the pan. The rotor divides
the inert gas into fine bubbles and mixes them with the molten mass. The turbulent flow
ensures agitation of the molten mass; this accelerates hydrogen transport from the molten
mass to the molten mass-bubble interface [1].

The refining process using an FDU unit can be divided into particular cycles with
regard to the rotor lifetime. In case the material of the rotor system is graphite, the geom-
etry of the rotary impeller changes with the increasing number of cycles due to external
phenomena such as oxidation at higher temperatures and abrasion, which subsequently
has an effect on the refining process [2]. We can identify purely negative effects such as the
peeling-off of the rotor parts, which affects the purity of the aluminum–liquid alloy after the
refining. A change in the geometry of the rotary impeller due to the increasing number of
cycles can have both a negative and positive impact. The geometry of the rotary impeller is
formed by external phenomena and, if the initial shape of the geometry is chosen correctly,
the shape can be optimized by the refining process itself [3].

Foundry process research is nowadays carried out through physical and numerical
modeling [4–10] and operational tests. The refining of aluminum melt is no exception.
One approach to simulation of the refining process is to use numerical methods. The
Computational Fluid Dynamics (CFD) method can describe not only the flow and pressure
fields during the refining, but also the refining process itself [11–19]. The CFD method
is also one of the options to verify whether the wear process of the rotor has a negative
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or a positive impact on degassing efficiency, or to perform the optimization of the rotary
impeller shape itself. A necessary condition for the creation of the numerical model is the
input geometry of the simulated part, which will be further discretized. The ideal scenario
is to use the data from a physical experiment in order to validate the numerical simulation,
and thus create a digital twin [20].

2. Basic FDU Geometry

The physical experiment, which will be the basis for future comparison with the
numerical simulation, was equipped with regards to the baffle plate and the rotor system
with identical components that are used on the FDU unit. Specifically, a rotor type A was
used, consisting of a rotary impeller and a shaft, the parameters of which are presented in
Table 1. The material of both components was graphite. The refining ladle was replaced
by a container of a similar volume but made of a material allowing for monitoring the
phenomena inside the refining ladle.

Table 1. Parameters of refining process and rotor design.

Rotor Type Parameters of Refining Process Rotor Design

A

Material Graphite

Eng. Proc. 2024, 60, 13 2 of 6 
 

 

fields during the refining, but also the refining process itself [11–19]. The CFD method is 
also one of the options to verify whether the wear process of the rotor has a negative or a 
positive impact on degassing efficiency, or to perform the optimization of the rotary im-
peller shape itself. A necessary condition for the creation of the numerical model is the 
input geometry of the simulated part, which will be further discretized. The ideal scenario 
is to use the data from a physical experiment in order to validate the numerical simulation, 
and thus create a digital twin [20]. 

2. Basic FDU Geometry 
The physical experiment, which will be the basis for future comparison with the nu-

merical simulation, was equipped with regards to the baffle plate and the rotor system 
with identical components that are used on the FDU unit. Specifically, a rotor type A was 
used, consisting of a rotary impeller and a shaft, the parameters of which are presented in 
Table 1. The material of both components was graphite. The refining ladle was replaced 
by a container of a similar volume but made of a material allowing for monitoring the 
phenomena inside the refining ladle. 

Table 1. Parameters of refining process and rotor design. 

Rotor Type Parameters of Refining Process Rotor Design 

A 

Material Graphite 

 

 

Refining time 180 s 
Speed 350 rpm 

N flow rate 17 Nl·min−1 
Working height 160 mm 

For the components in the basic state with zero cycles, no drawing documentation 
was available, and it was necessary to solve the conversion of real geometry to a 3D CAD 
model with regard to the components with a higher number of cycles. The need to create 
a 3D CAD model is not only due to obtaining data for numerical simulation, but also due 
to possible quantification of the loss of the rotor system. 

Geometry of the Rotor System 
The rotors were scanned with a high resolution using a ROMER Absolute Arm 7525SI 

device (with accuracy 0.05 mm) in order to obtain the data for the creation of 3D CAD 
geometry. The scan was subsequently exported in the form of a triangular mesh enabling 
further processing steps. The exported mesh format was STL format. (STL-Stereolithogra-
phy). 

Given the significant geometric complexity of the rotary impellers with multiple op-
erating cycles, as shown in Figure 1a, it was necessary to develop a process for the input 
of triangular mesh in order to allow for the conversion to a 3D CAD model. Obtaining a 
3D CAD model with the help of conventional methods of reverse engineering [21] was 
very complicated and time consuming. Maintaining the given level of detail, together with 
repeatability and speed were the conditions of the conversion process. 

The conversion process was divided into three separate steps: 
1. Cleaning and simplifying the scanned data, defining the coordinate system, placing 

the geometry into a coordinate system. This step is identical for all rotors, regardless 
of the number of cycles; 

2. Converting a triangular mesh to a purely square mesh; 
3. Converting a square mesh to a 3D CAD model. 

The exception to this were the rotor systems with zero cycles, as shown in Figure 1b, 
where only the first step of the entire process was used for the conversion, due to the 
clearly definable geometric elements. In this case, the conventional methods of reverse 
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Refining time 180 s
Speed 350 rpm

N flow rate 17 Nl·min−1

Working height 160 mm

For the components in the basic state with zero cycles, no drawing documentation
was available, and it was necessary to solve the conversion of real geometry to a 3D CAD
model with regard to the components with a higher number of cycles. The need to create a
3D CAD model is not only due to obtaining data for numerical simulation, but also due to
possible quantification of the loss of the rotor system.

Geometry of the Rotor System

The rotors were scanned with a high resolution using a ROMER Absolute Arm 7525SI
device (with accuracy 0.05 mm) in order to obtain the data for the creation of 3D CAD geom-
etry. The scan was subsequently exported in the form of a triangular mesh enabling further
processing steps. The exported mesh format was STL format. (STL-Stereolithography).

Given the significant geometric complexity of the rotary impellers with multiple
operating cycles, as shown in Figure 1a, it was necessary to develop a process for the input
of triangular mesh in order to allow for the conversion to a 3D CAD model. Obtaining a
3D CAD model with the help of conventional methods of reverse engineering [21] was
very complicated and time consuming. Maintaining the given level of detail, together with
repeatability and speed were the conditions of the conversion process.
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of the number of cycles;
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2. Converting a triangular mesh to a purely square mesh;
3. Converting a square mesh to a 3D CAD model.

The exception to this were the rotor systems with zero cycles, as shown in Figure 1b,
where only the first step of the entire process was used for the conversion, due to the clearly
definable geometric elements. In this case, the conventional methods of reverse engineering
could be used, and the input triangular mesh was used only as a reference for defining the
position and dimensions of the extracted geometric elements.

In the first step of processing, it was crucial to create a watertight triangular mesh
and its alignment to the required coordinate system. Creating the watertight triangular
mesh consisted of removing any holes that were formed during the scanning process. The
scanned data were positioned generally in space, and for further manipulation, it was
necessary to align everything into a unified coordinate system. Regarding the fact that the
entire rotor system was scanned as a whole, a clamping area was identified at the end of
the rotor shaft that is outside the refining ladle area, as shown in Figure 2a. The connection
of the rotary impeller and the rotor shaft was made by means of a bolted joint. For this
type of connection, it is not possible to determine the same zero position for all rotary
impellers. As a first processing step, the number of elements of the triangular mesh was
reduced. A reduction of 40–50% had virtually no effect on the original shape of the mesh
and significantly simplified the subsequent processing in the next step. The first processing
step was the only processing step, which required an adjustment of the triangular mesh by
the user.
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(right); (c) 3D CAD model, 1185 cycles.

The next step consisted of converting the triangular mesh to a purely square mesh.
This completely automatic process only required defining the resultant number of elements
of the square mesh. The number of elements was chosen mainly with regard to the use of
geometry for the subsequent numerical simulation. Due to the expected character of the
flow, the preservation of small details of the geometry would disproportionately increase
the resultant number of elements of the computational mesh with a questionable effect on
the resultant flow character. Repeatability for a particular scan while maintaining the same
number of elements is 100%. The resultant resolution of the 3D CAD model is entirely
dependent on the resolution of the purely square mesh.

The two above mentioned steps of the process, with regard to the possibilities of
reduction, optimization, and remeshing of the input triangular mesh allow for adjustments
in case of failure of the automatic conversions.

In the last step of the process, the square mesh was automatically converted to a 3D
CAD model, as shown in Figure 2b. The result of the conversion to a 3D CAD model was
the watertight element shown in Figure 2c, which was subsequently converted to a generic
STEP format. As it was about the volume and not about the surface, it was possible to use
the geometry for common volume operations, such as obtaining the total surface and total
volume. Those values are not completely fundamental and necessary with regard to the
future numerical simulation but allow to quantify the rotor loss depending on the number
of operational cycles, for both high and low pressure regimes.
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3. Results and Discussion

In case there is data for identical rotor systems with zero or more operational cycles,
it is possible to use the particular 3D CAD models for obtaining data regarding the rotor
material loss depending on the number of duty cycles, as shown in Table 2. The rotors were
scanned at predefined intervals that corresponded to different stages of the lifespan (from
0 to 100%). The rotor material loss was evaluated in PolyWorks® 2021 IR9 software. The
results do not consider all parameters, which were set on the FDU unit within the refining
process; they take into account only the total number of cycles and the amount of loss on a
given type of rotor system. For low (LP) and high pressure (HP) regimes, the rotor shaft
has to be included in the total loss comparison.

Table 2. Quantification of material loss in the rotor system depending on operational cycles.

Rotor Regime Cycles Shaft Volume
(mm3)

Rotor Volume
(mm3)

Loss of Material
Shaft (%)

Loss of Material
Rotor (%)

A

HP 0 3,637,275.947 2,030,257.657 0% 0%
HP 739 2,907,731.577 693,206.579 20.06% 65.86%
HP 936 3,524,843.212 876,099.357 3.09% 56.85%
HP 1152 3,446,136.794 918,924.816 5.26% 54.74%
HP 1185 3,364,399.409 791,155.046 7.50% 61.03%

Figure 3 shows the wear rate of rotor A at the end of its lifetime at 1185 cycles in the
high-pressure regime. It can be observed that the wear of the rotary impeller at 1185 cycles
is considerable and the level of the impact on the refining process is not negligible. From
the geometry shape shown in Figure 3 it is evident that the rotary impeller shows a higher
wear rate at the bottom of the geometry. The reason for this asymmetry may be due to the
separation of the flow field in the refining ladle where this stimulus will be evaluated in
the planned numerical simulation (CFD).
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4. Conclusions

A methodology of the conversion of complex scans of rotor systems into 3D CAD
models for future use in numerical simulations (CFD) was developed. The methodology
was validated and further used for quantification of the material loss in rotor systems
depending on the number of operational cycles.
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