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Abstract: Chemiresistive gas sensors are an important tool for monitoring air quality in cities and
large areas due to their low cost and low power and, hence, the ability to densely distribute them.
Unfortunately, such sensor systems are prone to defects and faults over time such as sensitivity loss of
the sensing material, less effective heating of the surface due to battery loss, or random output errors
in the sensor electronics, which can lead to signal jumps or sensor stopping. Although these defects
usually can be compensated, either algorithmically or physically, this requires an accurate screening
of the entire sensor system for such defects. In order to properly develop, test, and benchmark
corresponding screening algorithms, however, methods for simulating gas sensor networks and
their defects are essential. In this work, we propose such a simulation method based on a stochastic
sensor model for chemiresistive sensor systems. The proposed method rests on the idea of simulating
the defect-causing processes directly on the sensor surface as a stochastic process and is capable of
simulating various defects which can occur in low-cost sensor technologies. The work aims to show
the scope and principles of the proposed simulator as well as to demonstrate its applicability using
exemplary use cases.

Keywords: environmental sensors; sensor networks; fault detection

1. Introduction

Networks of chemiresistive gas sensors can be used to continuously monitor the
different gases in areas of interest with a considerably high spatial density [1]. One major
drawback of using this technology can be its stability over long time scales. As different
faults can occur over time, the measurement accuracy can degrade consecutively. Such
defects can be caused by different processes on the sensor, which can affect the signal
output in different ways. Examples would be a loss of sensitivity, sensor stopping, signal
jumps, and battery loss, as is shown in Figure 1.

In order to repair or replace individual faulty sensors inside the network, it is necessary
to have screening algorithms which continuously evaluate the current state of the sensor
network in terms of possible defects. Hence, for general wireless sensor networks, such
algorithms have already been investigated [2]. In order to generate and assess such
algorithmic approaches for chemiresistive gas sensors, however, simulation data exploring
different sensor network scenarios are necessary. For the specific case of sensor drift, such
frameworks have already been investigated to evaluate calibration algorithms, e.g., in [3].
Therefore, in order to study other fault types, we want to present a framework based upon
a stochastic sensor simulator [4], which can provide sensor network simulations specifically
feasible for a number of different sensor defects.
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Figure 1. Different examples of defects (original signal in blue, defect in red). (a) Sensitivity loss 
leading to a lower resistance response to a gas concentration. (b) Signal jump causing an abrupt 
additive change in the signal. (c) Sensor stopping leading to constant sensor outputs and (d) battery 
loss causing a lower heating temperature, which leads to a slower sensor recovery process. 

2. Methods 
Our sensor network simulation framework consists of three different parts, which are 

depicted in Figure 2a. In the Concentration Model, an array of different gas sources is sim-
ulated in order to calculate the spread of the emitted gases across the simulation area and 
thus simulate their local distributions. The output of this model is the time-dependent con-
centration series which would be measured at each of the sensor locations. These concentra-
tion time series are then the input of the sensor response model. An illustration of the con-
centration distribution calculated by the concentration model is shown in Figure 2b. 

The sensor response model then translates the input concentrations at each sensor 
location to the expected sensor signal measurements. This is done by using a stochastic 
sensor model which has been developed in previous research [4]. 
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Figure 2. (a) shows the setup for the simulation framework. (b) shows an exemplary gas distribution created by four gas 
sources which are marked inside of the image. 

In particular, the sensor response model simulates the processes which are directly 
occurring on the sensor surface by modeling its adsorption and desorption processes on 
a microscopic level. Finally, the sensor fault model generates faults in the synthetic sig-
nals. Due to the flexibility of the sensor model, two different approaches can be followed 
here, as shown in Figure 3. 

On the one hand, the faults can be generated after the signal simulation by manipu-
lating the output signal (post-simulation faults). On the other hand, the faults can be gen-
erated intrinsically in the sensor simulation as well (intrinsic faults). Here, sensitivity loss 

Figure 1. Different examples of defects (original signal in blue, defect in red). (a) Sensitivity loss leading to a lower resistance
response to a gas concentration. (b) Signal jump causing an abrupt additive change in the signal. (c) Sensor stopping
leading to constant sensor outputs and (d) battery loss causing a lower heating temperature, which leads to a slower sensor
recovery process.

2. Methods

Our sensor network simulation framework consists of three different parts, which
are depicted in Figure 2a. In the Concentration Model, an array of different gas sources is
simulated in order to calculate the spread of the emitted gases across the simulation area
and thus simulate their local distributions. The output of this model is the time-dependent
concentration series which would be measured at each of the sensor locations. These
concentration time series are then the input of the sensor response model. An illustration of
the concentration distribution calculated by the concentration model is shown in Figure 2b.
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Figure 2. (a) shows the setup for the simulation framework. (b) shows an exemplary gas distribution created by four gas
sources which are marked inside of the image.

The sensor response model then translates the input concentrations at each sensor
location to the expected sensor signal measurements. This is done by using a stochastic
sensor model which has been developed in previous research [4].

In particular, the sensor response model simulates the processes which are directly
occurring on the sensor surface by modeling its adsorption and desorption processes on a
microscopic level. Finally, the sensor fault model generates faults in the synthetic signals.
Due to the flexibility of the sensor model, two different approaches can be followed here,
as shown in Figure 3.
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can be modeled by switching off sensor sites in the sensor surface simulation, whereas 
battery loss can be generated by changing the heating properties in the model parameters. 
Both these methods have advantages and disadvantages. Post-simulation faults tend to 
be rather efficient, since they can be generated spontaneously from a normal signal with 
respect to the needed sensor fault. However, since a formula is applied here after the sim-
ulation, these defects seem to be less accurate. This is the main advantage of the intrinsic 
approach, since the defect is simulated on the sensor surface, leading to a higher accuracy. 
This approach is less efficient, however, since every case has to be simulated beforehand. 

 
Figure 3. Different approaches for the sensor fault model. (a) shows a post-simulation approach, 
where the faults are added after the sensor signal was simulated by the sensor response model. (b) 
shows the intrinsic simulation approach, where the fault behavior is integrated in the sensor re-
sponse model. 

3. Results and Discussion 
The different defect types have been implemented intrinsically in the stochastic sen-

sor model by adjusting the heating parameters for battery loss fault simulation and chang-
ing the amount of responsive binding sites on the simulation grid for sensitivity loss sim-
ulation. Signal jumps and sensor stopping have been implemented as post-simulation 
faults. In order to test the model, a set of four concentration pulses followed by clean air 
have been simulated to show the impact of the different faults on the signal. These can be 
seen in Figure 4. 

It can be seen that the sensitivity loss leads to a lower response to the concentration 
pulses, which is in-line with the physical expectations. Additionally, for the battery loss, 
which should lead to lower heating capabilities, a signal change can be seen. Here, the 
recovery process for the sensor signal is not as efficient as for the original signal, which 
leads to an additive drift caused by slow recovery. Additionally, the processing defects 
such as sensor stopping and signal jumps are represented well in the simulation experi-
ment. 

 

 

 

 

Figure 3. Different approaches for the sensor fault model. (a) shows a post-simulation approach,
where the faults are added after the sensor signal was simulated by the sensor response model.
(b) shows the intrinsic simulation approach, where the fault behavior is integrated in the sensor
response model.

On the one hand, the faults can be generated after the signal simulation by manip-
ulating the output signal (post-simulation faults). On the other hand, the faults can be
generated intrinsically in the sensor simulation as well (intrinsic faults). Here, sensitivity
loss can be modeled by switching off sensor sites in the sensor surface simulation, whereas
battery loss can be generated by changing the heating properties in the model parameters.
Both these methods have advantages and disadvantages. Post-simulation faults tend to
be rather efficient, since they can be generated spontaneously from a normal signal with
respect to the needed sensor fault. However, since a formula is applied here after the simu-
lation, these defects seem to be less accurate. This is the main advantage of the intrinsic
approach, since the defect is simulated on the sensor surface, leading to a higher accuracy.
This approach is less efficient, however, since every case has to be simulated beforehand.

3. Results and Discussion

The different defect types have been implemented intrinsically in the stochastic sensor
model by adjusting the heating parameters for battery loss fault simulation and changing
the amount of responsive binding sites on the simulation grid for sensitivity loss simulation.
Signal jumps and sensor stopping have been implemented as post-simulation faults. In
order to test the model, a set of four concentration pulses followed by clean air have been
simulated to show the impact of the different faults on the signal. These can be seen in
Figure 4.

It can be seen that the sensitivity loss leads to a lower response to the concentration
pulses, which is in-line with the physical expectations. Additionally, for the battery loss,
which should lead to lower heating capabilities, a signal change can be seen. Here, the
recovery process for the sensor signal is not as efficient as for the original signal, which
leads to an additive drift caused by slow recovery. Additionally, the processing defects such
as sensor stopping and signal jumps are represented well in the simulation experiment.
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Figure 4. Different signal outputs for the different sensor fault types implemented in the stochastic model. (a) Sensitivity 
loss, (b) battery loss, (c) sensor stopping, and (d) signal jumps. 

4. Conclusions and Outlook 
It can be noticed that our simulation framework is suited for simulating various de-

fect effects which can be used for algorithm development for fault detection. There are 
different design choices to be made which are influenced by computational efficiency and 
fault accuracy. Therefore, additional research has to be done in this area as well. 

In future research, other faults might also be considered for simulation. For example, 
interfering gases might be an effect which should be studied in more detail for this kind 
of sensor. 
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Figure 4. Different signal outputs for the different sensor fault types implemented in the stochastic model. (a) Sensitivity
loss, (b) battery loss, (c) sensor stopping, and (d) signal jumps.

4. Conclusions and Outlook

It can be noticed that our simulation framework is suited for simulating various defect
effects which can be used for algorithm development for fault detection. There are different
design choices to be made which are influenced by computational efficiency and fault
accuracy. Therefore, additional research has to be done in this area as well.

In future research, other faults might also be considered for simulation. For example,
interfering gases might be an effect which should be studied in more detail for this kind of
sensor.
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