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Abstract: While transformer-type conductivity sensors are the usual type of inductive sensors, this
paper describes the theory behind less used eddy current sensors. This type of sensor measures
the conductivity of a liquid by inducing eddy currents and observing the effect on the sensor coil,
which allows a simpler sensor design and promises a cost advantage in implementation. A novel
model description is derived from the Maxwell equations and implemented by an equivalent RLC
circuit. The designed model is validated by comparisons with experimental observations and FEM
simulations. The result leads to a better understanding of the physical effects of the sensor and the
influencing parameters for future sensor developments. The aim is to provide starting points for
further sensor development of low-cost inductive conductivity sensors.
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1. Introduction

Inductive conductivity sensors are widely used for salinity measurements from stan-
dard industrial processes to highly accurate deep ocean measurements. Due to their
property of not being in contact with the measuring medium, inductive sensors have a
clear advantage over conductive measuring methods. Unwanted effects of biofouling
and polarization can be reduced by protective housings, resulting in a durable and low
maintenance sensor. Despite the increasing demand for low maintenance in situ moni-
toring sensors, the costs for inductive sensors are still higher than for conductive ones.
Due to their more complex design, the production of accurate inductive sensors is more
expansive than simple four-electrode contacting conductivity cells. Motivated by the great
advantages of measurements with high space-resolution through large sensor quantities
in the ocean, the authors of this paper see a need for accurate but low-cost inductive
conductivity sensors, which can be used for long time measurements. The established and
mostly used technology for inductive conductivity measurements is the transformer-type
sensor, which uses two toroidal coils. Striggow and Dankert [1] first introduced the theory
of this sensor type in 1985. Since then, various patents (e.g., US4740755A, US5793214A,
US6414493B1, and US7965167B2) evolved based on this theory, and current research is still
being conducted [2].

With transformer-type sensors not being the only electromagnetic sensors to measure
conductivity, the research conducted here focuses on alternative inductive sensors based
on magnetic flux through the fluid. This paper discusses the theory of solenoidal coils used
for conductivity measurement, which are henceforth referred to as eddy current sensors.
Eddy current sensors so far have been mostly empirically investigated, but have shown
promising test results with their simple construction [3–6]. This paper describes the basic
functionality of eddy current sensors and introduces a new way of modeling for these
sensor types. Eddy current sensors are used through phase differences [5,6] or amplitude
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values [3,4]. The model description is derived from Maxwell’s equations, and the effects
are supported by FEM simulations.

2. Eddy Current Sensor Model

The toroidal coils of the transformer-type sensors (Figure 1a) are coupled by the
current through the water as a third winding. The magnetic flux is bound in the ferrite
cores. In contrast, eddy current sensors (Figure 1b) are based on an alternating magnetic flux
through water, which, true to their name, give eddy currents in the fluid. The alternating
magnetic flux is generated by a simple solenoid [3,4] or a planar coil [5,7] fully submerged
in the fluid. The current density of the eddy currents depends on the water conductivity.
This effect enables the related measurement. The eddy current effect will also have an
influence on transformer-type sensors, but for them, the coupling through conductive
water is more dominant.
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Figure 1. Schematic diagram of (a) a transformer-type sensor and (b) an eddy current sensor. Green
vectors display the current density, red the magnetic field strength. The sensors are surrounded by a
conductive fluid.

2.1. Working Principle

Due to Lenz law, the induced eddy currents generate a magnetic counter field, which
weaken the main magnetic field of the primary coil. This damping influences the coils’
impedance, and therefore the coupling of two coils. The result is an inversely proportional
relationship between the strength of the B-field and the conductivity. Besides conductivity,
the strength of the magnetic field depends on the permeability µr of the liquid. This effect
is negligible when measuring NaCl concentrations, e.g., ocean salinity [8]. For other salt
solutions like CuSO4, however, the solution’s concentration has a major influence on the
permeability, and has to be considered [7]. In the following, the model description will be
derived for the impedance of a single solenoid. Later, this model can be used to describe
the magnetic coupling between two coils.

2.2. Equivalent Model

In the following, the damping effects of eddy currents are established using Maxwell’s
equations. An equivalent model representation is then derived. The model of the eddy
current sensor is based on a standard RLC equivalent circuit of a coil. A single solenoid is
represented by the inductance L, copper resistance RCu, and parasitic effects Cp. Due to the
influence of the eddy currents on the magnetic field, the inductance L has to depend on the
water conductivity σ. It is considered that the coil is perfectly isolated from the fluid, and
no direct current can flow from the copper coil through the water. The E-Field, which leads
to the eddy currents, is induced by the total B-Field in the fluid, and can be described by
Faraday’s law of induction.

rot
→
E = − δB

δt
(1)
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Due to the fluid’s conductivity σ, the eddy currents again induce a counteracting mag-
netic field BE which can be represented by inserting Equation (1) in Ampere’s circuital law.

rot
→
BE = µ0·(−σ· δB

δt
− ε0

δ2B
δt2 ) (2)

The field strength BE acts against the field BC emitted by the coil. For a coil with w
windings, a flux area A, and a magnetic resistance Rmag, the current through the coil i
leads to:

Bc =
i·w

A·Rmag
(3)

The total B-Field through the water is then given by a differential equation as the sum
of BC and BE:

B =
i·w

A·Rmag
− µ0·( σ· δB

δt
+ ε0

δ2B
δt2 ) (4)

After Laplace transformation and multiplication with the magnetic flux area A, the
magnetic flux φ can be derived:

φ =
i·w

Rmag·(1 + µ0·σ·s + µ0·ε0·s2)
(5)

Since the induced voltage is given by U = w· δφ
δt and the impedance is Z = U

i , the
impedance of the coil is given by

Z =
L·s

1 + µ0·σ·s + µ0·ε0·s2 (6)

where L = w2

Rmag
is the constant inductance of the coil. The derived impedance transfer

function in Equation (6) models the eddy current effects and represents the conductivity
dependent inductance of the coil. The TF can be decomposed into another equivalent RLC
parallel circuit where the resistance and the capacitance are represented by

RE =
L

µ0·σ
and CE =

µ0·ε0

L
(7)

Comparing Equation (2) to Equations (6) and (7) shows that the capacitance CE
in the model represents the displacement current and the resistance, the inverse of the
conductivity. Applying the derived transfer function to the equivalent circuit of a coil leads
to the eddy current model of a single coil shown in Figure 2b. An eddy current sensor
can also be implemented as a transformer using two solenoids coupled through the water.
Figure 2b shows the equivalent circuit of such a system.
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For a constant permeability µr, Rmag and the inductivity L stays constant. Therefore,
the resistance RE is proportional to 1

σ . An increase in the conductivity leads to a decrease
in the equivalent impedance, and therefore, to a damping of the output signal. A changing
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permeability would have an impact on the inductivity L, but is not considered since the
changes for seawater are negligible.

3. Test and Simulation Results

For model verification, the frequency response of the circuit impedance in Figure 2b
was calculated using Matlab. The results were compared to a FEM simulation and a
prototype test. All tests calculated the impedance based on output voltage divided by
input current.

3.1. Eddy Current Sensor Test

An eddy current sensor was build according to Figure 3. Two solenoids were coiled
on a pipe and coated by an insulation. A test was executed, where a sensor was submerged
in an aquarium with 35 L of NaCl solution. In three steps, the conductivity was increased
and measured by a reference sensor to 0.65 S/m, 3.7 S/m, and 9.2 S/m. The test showed
a damping of the coupling with increase in water conductivity. This result differs from
the observations by Parra in [3]. However, a failed test with missing insulation showed
an increased coupling between primary and secondary coil with increasing conductivity,
which was also observed in some of Para’s experiments.
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3.2. FEM Model

The FEM simulation used a 3D model based on the prototype concept of Figure 3
and was conducted using Ansys Maxwell. In the simulation, the sensor was simulated in
the same three water conductivities as in Section 3.1. The FEM-simulation confirmed the
damping behavior for eddy current models. Parasitic effects were not simulated, and only
the linear effect was represented. The amplification and other effects around the resonance
point could not be validated.

3.3. Results

The results from the sensor test and the FEM simulation were compared to the RLC
equivalent model representation. Since the parameters of all three tests were different,
the results were normed to their resonance peak to be comparable. The normed solutions
are plotted together in Figure 4. All three frequency responses for the impedance show
a similar behavior. An increase in conductivity leads to a decreased impedance. In
the resonance point of the model and the prototype test, the relative difference has a
high similarity. Since the parasitic effects were not simulated in the FEM simulation, the
resonance peak is missing. The FEM results still show the same damping behavior, only in
smaller dimensions.
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4. Discussion

The results show that this derived equivalent model can represent the eddy current
effect for this sensor type. The theory of the ongoing effects was confirmed by practical tests
and FEM simulations. An improved parameterization of the model is necessary to ensure
a representative simulation. This can be realized by carrying out further experimental tests
and comparing them with the model representation. Furthermore, our results show that
the eddy current effect leads to a damping of the measurement signal when increasing the
conductivity of the water. In some frequency ranges this is deviating from observations
made in existing publications [3] and could not be explained finally in the course of
this research. For final confirmation, a deeper analysis of the settings and the frequency
dependent dominant effects is necessary.

5. Conclusions

The outcome of this paper gives a better model understanding of the eddy current
sensor type, which can lead to the design of optimized sensors. Based on these derived
results, further development and investigation needs to be done to fully evaluate the
potential and usage of eddy current sensors as an alternative to transformer-type sensors.
Besides accuracy, the power consumption and cost effectiveness will be evaluated in future
work. Furthermore, the influence of the eddy current effect on transformer-type sensors
could be investigated.
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