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Abstract: Adsorption is a phase transfer process extensively utilized for removing substances
from fluid phases (either gases or liquids) to the solid phase, also known as the adsorbent particle.
This natural method is observable in various environmental compartments. In water or effluent
treatments, a solid interacts with a pollutant, such as a dye. The pollutant is termed the adsorbate,
and the solid is the adsorbent. This technique has been proven efficient in removing a broad range
of contaminants. This study investigates the use of the adsorption technique to eliminate brilliant-
green dye from aqueous solutions, employing different adsorbent materials like AC, CNT, ZnO, and
ZnO/AC prepared through the hydrothermal method. The compositions of these composites were
elucidated using analytical techniques such as FTIR, EDX, and FE-SEM. The study also compares
the efficiency of different carbon sources in removing brilliant-green dye, namely, activated carbon
(AC), carbon nanotubes (CNTs), zinc oxide (ZnO), and AC/ZnO nanocomposites as adsorbents. The
removal efficiency (E%) for BG dye followed the order: CNT > ZnO/AC > AC > ZnO. Additionally, a
comparison was made between sonication and a shaker water bath for different carbon sources in
removing brilliant-green dye. The shaker water bath demonstrated an efficiency range of 90.122%
to 42.812%, while sonication showed 90.011% to 32.012%. The adsorption data aligned with the
Freundlich isotherm model.
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1. Introduction

Pollution from point sources such as wastewater treatment plants (WWTPs) has a
significant impact on freshwater ecosystems. Effluents from WWTPs introduce a vari-
ety of chemical stressors to rivers, including excess organic matter, inorganic nutrients,
and a plethora of organic micro-pollutants such as pesticides, dyes, drugs, pharmaceu-
ticals, and industrial products [1–4]. In addition to these chemicals, rivers may also be
subjected to other concurrent stressors. Notably, disruptions in water flow and elevated
water temperatures pose threats to river biota, often leading to local extinctions and an
overall decline in biodiversity [5–9]. Such stressors act as environmental filters, exerting
additional selective pressures that influence the composition and relative abundance of
species within riverine biological communities. Numerous studies have linked exposure to
these pollutants with various health issues, including cancers, skin irritations, respiratory
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complications, and allergies. A significant portion of these dyes are derived from aromatic
organic compounds [10,11]. Brilliant green, for instance, is widely utilized as a biological
stain, particularly in Gram staining procedures to differentiate bacterial species.

Additionally, it serves as a histological stain and is added to domestic animals to inhibit
the proliferation of putrefactive parasites and fungi. Several methods, such as ion exchange,
photodegradation, filtration, and adsorption, have been employed to eliminate organic
dyes from water [12–15]. Among these, the adsorption technique, being cost-effective and
highly efficient, has garnered significant attention from researchers in recent times.

2. Method
2.1. Determination of Maximum Absorption (λmax) of BG Dye

The chemical structure of brilliant-green dye is shown in Figure 1. This dye, with a
molecular formula of C27H34N2O4S and a molecular weight of 482.6 g/mol, is an odorless
yellow-green to green powder. The maximum absorption wavelength of the dye was
determined using a UV spectrophotometer. A concentrated dye solution (30 mg/L) was
prepared, and the λmax was found to be 630 nm, recorded over a range of 500–700 nm. This
is further illustrated in Figure 1.

Figure 1. The chemical structure of brilliant-green dye and its UV-visible absorption spectrum.

2.2. Adsorption Studies

To achieve maximum removal efficiency, tests were conducted in multiple sets. Each
set consisted of 0.05 gm of the composite placed in distinct stoppered conical flasks. To
each flask, 100 mL of freshly prepared BG dye solution with an initial concentration of
50 mg/L was added. The samples were agitated in a shaking incubator at 160 rpm for
60 min and subsequently separated via centrifugation at 6000 rpm for 10 min. The resulting
solutions were analyzed using a UV-visible spectrophotometer PC 1800 at λmax = 630 nm.
The adsorption capacity at equilibrium was determined using the equation:

qe =
Vsol(Co − Ce)

m
(1)

The adsorption efficiency and removal capacity of the dye on the adsorbents were
calculated according to:

%E =
(Co − Ce)

Co
× 100 (2)
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3. Results and Discussion
3.1. Characterization of ZnO/AC Nanocomposite
3.1.1. FT-IR Spectroscopy

FT-IR spectroscopy is utilized to identify changes in functional groups, shedding light
on the affinity between atoms. After the surface was dried and ground with potassium
bromide (KBr), spectra were taken both before and after adsorption to observe the absorp-
tion peaks. As shown in Figure 2, the infrared spectra of the AC/ZnO nanocomposite are
presented [16]. A broad band observed at 3350 cm−1 can be attributed to the stretching
vibrations of the OH group. Another vibration identified in the range 3020–2850 cm−1

corresponds to asymmetric stretching vibrations of aliphatic and aromatic C-H groups. The
C=O group, present in the nanocomposite, manifested absorption peaks within the range
1620–1740 cm−1. Additionally, the range 480–800 cm−1 revealed absorption peaks associ-
ated with C-C, C-N, and C-O bonds. However, the FT-IR analysis of the nanocomposite
showed band shifts, indicating interactions between the carboxylic groups on the AC/ZnO
nanocomposite [17,18].

Figure 2. FT-IR spectrum of nanocomposite before and after dye adsorption.

3.1.2. Scanning Electron Microscopy and Energy-Dispersive X-ray

Figure 3 presents scanning electron microscopy images captured at a magnification of
200 nm. Through this analysis, insight was gained into the morphology of the particles, the
nature of clusters on the adsorbent surfaces, and their porosity, both prior and subsequent
to adsorption. According to the figure, the activated carbon surface exhibits a rough texture.
However, after the introduction of zinc oxide onto the activated carbon, small clusters,
irregular in nature, become evident. This showcases the surface prior to dye adsorption.
Post-dye deposition on the ZnO/AC nanocomposite surface, an enlargement of these
clusters is observed, indicating the incorporation of the dye within the surface. This depicts
the surface following adsorption. EDX serves as a versatile tool for both qualitative and
semi-quantitative analyses. The EDX patterns for the nanocomposite presented in Figure 3
confirm the presence of Zn and O within the ZnO nanoparticles. The primary constituents
of the activated carbon (AC) are C and O. The ZnO-AC EDX pattern delineates the presence
of Zn, O, and C within the AC/ZnO nanocomposite [19,20].
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Figure 3. FE-SEM of (a) activated carbon, (b,c) nanocomposite before and after BG dye adsorption,
and (d) EDX analysis of ZnO/AC nanocomposite.

3.1.3. Comparative Adsorption of BG Dye Using Different Carbon Sources

A comparative study was conducted to assess the dye removal efficacy of various
adsorbents, namely, activated carbon (AC), carbon nanotubes (CNTs), zinc oxide (ZnO),
and AC/ZnO nanocomposites. As observed in Figure 4, the dye removal efficiency (E%)
followed the order: CNT > ZnO/AC > AC > ZnO. This can be attributed to the exceptionally
high efficiency and large surface area of the carbon nanotube, which resulted in a removal
efficiency of 99.12%. In contrast, zinc oxide demonstrated a comparatively lower removal
efficiency of 40.22% [21,22].

Figure 4. Comparison of different carbon sources for dye removal at 20 °C, over 1 h, using 0.05 g in
100 mL water, with a concentration of 50 mg/L.

3.1.4. Comparative Adsorption Using Shaker Water Bath and Sonication for BG
Dye Removal

A comparative study was conducted between sonication and shaker water bath meth-
ods for dye removal using various sources of carbon, namely, activated carbon (AC), carbon
nanotube (CNTs), AC/ZnO nanocomposites, and zinc oxide (ZnO), as depicted in Figure 5.
The removal efficiency (E%) for the shaker water bath method was found to be 90.122%,
84.21%, 82.812%, and 40.11% for the respective carbon sources, whereas sonication yielded
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removal efficiencies of 90.011%, 77.2%, 72.2%, and 32.01% for the same carbon sources.
This difference can be attributed to the ultrasound waves’ capability to break down dye
molecules and dissolve the surface in the solution, thus slightly reducing the removal
percentage compared to the shaker water bath method [23,24].

Figure 5. Comparison between sonication and shaker methods using different carbon sources.

Further comparison was made using varying amounts of activated carbon (AC) deco-
rated with zinc oxide (ZnO). This was studied using 0.05 g of C/ZnO, 0.1 g of C/ZnO, 0.2 g
of C/ZnO, 0.5 g of C/ZnO, and 1 g of C/ZnO nanocomposites, as shown in Figure 6. The
highest removal efficiency (E%) was observed for ZnO/AC (1 gm) at 90.451%, followed
by efficiencies of 86.56% for ZnO/AC (0.5 gm), 80.59% for ZnO/AC (0.2 gm), 72.26% for
ZnO/AC (0.1 gm), and 67.55% for ZnO/AC (0.05 gm) in removing brilliant-green dye.

Figure 6. Effect of comparison between amounts of C decorated with ZnO nanocomposite (exper-
imental conditions: mass of absorbent, 0.5 g; temperature, 20 °C; concentration, 50 mg/L; contact
time, 60 min).

4. Adsorption Isotherms

Adsorption isotherms were evaluated using three distinct models: the Langmuir
and Freundlich models. The results are depicted in Figure 7. The Freundlich model,
which is associated with adsorption on a heterogeneous surface, is expressed using the
following equation:

Qe = k f Ce
1
n (3)

where Ce (mg/L) represents the concentration at equilibrium, Qe is the amount of dye
adsorbed (mg/g), n is the adsorption strength, and k f signifies the adsorption capacity.
However, the Langmuir adsorption isotherm describes monolayer adsorption formed on a
surface with a consistent number of fixed positions. Table 1 suggests that the adsorption
process aligns better with the Freundlich isotherm, suggesting multilayered adsorption [25].
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Figure 7. Several adsorption non-linear model fits for dye adsorption onto nano-composite.

Table 1. Constants and correlation coefficients of the Langmuir and Freundlich adsorption isotherms
for brilliant-green dye adsorbed onto nano-composite at 20 ◦C.

Langmuir Equation Freundlich Equation

KL qm R2 KF n R2

0.145 218.633 0.9435 927.63 0.436 0.9663

5. Conclusions

This study demonstrated the high-quality removal of brilliant-green dye from aqueous
solutions using AC/ZnO nanocomposites. The results indicated that the shaker method
exhibited better efficiency (E%) compared to sonication for the removal of brilliant-green
dye. Furthermore, the most effective adsorption was observed when using 1 gm of C/ZnO
nanocomposite. Various analytical tests, including FTIR, FE-SEM, and EDX, were employed
to analyze the morphological properties of the adsorbents before and after adsorption. The
EDX pattern for the ZnO-AC confirmed the presence of Zn, O, and C elements within the
AC/ZnO nanocomposite.
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