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Abstract: This study presents a detailed analysis of the effects of machining parameters, including
the cutting speed (v), feed (f), depth of cut (d), and type of coolant flow (CF), on two primary
performance characteristics in a machining process, namely, surface roughness (Ra) and material
removal rate (MRR). A series of experiments were conducted, and the resulting data were analyzed
using regression models, analysis of variance (ANOVA), Taguchi’s L9 orthogonal array analysis, and
grey relational analysis. The initial findings from the raw experimental data revealed that, while Ra
appeared to be influenced by a combination of parameters, an increasing trend in MRR was observed
with higher values of feed rate and depth of cut. The regression models suggested the significant
influence of the machining parameters on the Ra and MRR, with the type of coolant flow playing
a critical baseline role. The ANOVA results statistically validated these models and ranked the
significance of each parameter in affecting Ra and MRR. Furthermore, Taguchi’s analysis supported
the findings and highlighted the potential for process optimization. The grey relational analysis
revealed that the combination with a speed of 130 m/min, a feed of 0.1 mm/rev, a depth of cut of
0.15 mm, and a minimum quantity lubrication type of coolant flow provided the optimal result, with
a GRG of 0.704, ranking first among all other parameter combinations, providing valuable insights
for improving machining processes. The results, thus, indicated that the best results were generally
obtained with higher speeds, lower feed rates, and moderate depths of cut under minimal quantity
lubrication conditions. These findings could greatly benefit industry professionals in optimizing their
processes for efficiency and quality, though it is noted that results may vary with different materials
and machining conditions, presenting potential areas for future research.

Keywords: EN8 steel; machining parameters; orthogonal array; surface roughness; material
removal rate

1. Introduction

The significance of understanding the interactions between various machining param-
eters and their effects on machining performance cannot be overstated [1–4]. As manufac-
turing industries continually endeavor to improve efficiency, performance, and product
quality, it is crucial to comprehend the interrelationships between these variables. Due
to the widespread use of metallic materials in industries, machining, particularly the ef-
ficacy of turning operations on metals, has been the subject of numerous studies [5,6].
Among these, EN8 steel holds a key position due to its extensive use in the automotive
industry for studs, keys, axles, and shafts [7–9].
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Thus, the present study seeks to examine EN8 steel machining performance under
different coolant flows, filling a gap in the existing literature, as very few researchers have
discussed this topic to date [10,11]. Surface roughness (Ra) and material removal rate
(MRR) are two fundamental performance characteristics considered in any metal-cutting
process [12]. The Ra influences the functional properties of machined components, such
as wear resistance, fatigue strength, and frictional behavior [13–15]. In contrast, the MRR
directly affects the productivity and effectiveness of the machining process [16,17]. Both
of these characteristics are known to be influenced by machining parameters such as the
cutting speed (v), feed rate ( f ), depth of cut (d), and coolant flow type (CF) [18–20]. Despite
extensive prior research on these parameters, the specific impact of coolant flow on the Ra
and MRR during the machining of EN8 steel has not been explored in detail. To decipher the
intricate relationships between these variables, the present study employed a multifaceted
analytic strategy, including regression models, analysis of variance (ANOVA), Taguchi’s L9
orthogonal array analysis, and grey relational analysis (GRA).

2. Materials and Methods
2.1. Materials

EN8 (080M40), an unalloyed medium carbon steel [21], is the material utilized in this
study. Thermo-mechanical rolling is responsible for EN8’s superior strength compared to
conventional bright mild steel. EN8 is suitable for various engineering applications where
steel with greater strength may be required due to its superior strength [22]. Although EN8’s
tensile properties can differ, they are typically between 500 and 800 N/mm2 [23]. EN8
is commonly available in various diameter bar forms. Considering the objectives of the
present study, attempts were made to acquire three sets of nine workpieces, each sourced
from a unique lot of material. In this study, we used EN8 steel, a grade of carbon steel
known for its excellent tensile strength and toughness, making it a popular choice for
various industrial applications. The EN8 steel used in our experiments has a specific
chemical composition that confirms its grade according to standard specifications. It
contains carbon (C) in a proportion of 0.36 to 0.44 %, manganese (Mn) from 0.60 to 1.00 %,
and silicon (Si) from 0.10 to 0.40 %. Additionally, it has a maximum of 0.050 % sulfur (S)
and 0.050 % phosphorus (P). This strategy was employed to accommodate and account for
any minor differences in the properties of the workpiece materials. Bars with a diameter of
25 mm were cut into 70 mm long sections. Following the initial preparation, each of the
twenty-seven sample workpieces was turned to have a diameter of 24 mm and a length of
20 mm, ensuring uniformity.

2.2. Experimental Setup

The investigations were conducted on an ACE Jobber Jr. machine. It is a CNC lathe
with a 300 mm center-to-center distance, a 250 mm maximum turning diameter, and a
300 mm maximum turning length. The machine has a 450 mm swing over the platform,
a 130 mm X-axis, and a 300 mm Z-axis stroke. The variable feed rate ranges from 0 to
10,000 mm/min, and the X and Z axes traverse at 20 m/min. The spindle motor has a
power rating of 5.5 kW and can operate between 50 and 3000 RPM. A water-based Veedol
Amulkut 4G was used as a coolant during the operation. CNMG 120408 TN 2000 cutting
tool inserts were utilized for turning operations.

2.3. Measuring Techniques

The present work employed surface roughness measurement and material removal
rate (MRR) calculation as key measuring techniques. The Ra is a common surface roughness
parameter that measures the average surface roughness by comparing all peaks and valleys
to the mean line and aggregating them over the entire cut-off length. This investigation
measured the surface roughness with a Taylor Hobson surface roughness tester: a stylus-
type surface roughness measuring instrument designed for shop floor use. The material
removal rate (MRR) is another important metric measured in this investigation.
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It was calculated by dividing the difference in weight before and after the turning oper-
ation by the machining time and is represented mathematically by the following equation:

MRR =
Initial weight − Final weight

Machining time
(1)

2.4. Experimental Design

Four crucial turning parameters, namely, the cutting speed (v), feed ( f ), depth of cut
(d), and coolant flow type (CF), were evaluated at three distinct levels in the present study.
These parameters were chosen due to their well-established importance in machining
processes, as these factors largely determine the product’s overall quality. As discussed
earlier, the investigation was centered on two response variables: the surface roughness
(Ra, measured in µm) and the machined specimens’ material removal rate (MRR). The ex-
perimental design was based on the Taguchi method, which aims to minimize process
variation using a robust design [24]. The Taguchi method organizes process parameters
and their corresponding levels using orthogonal arrays (OAs). Degrees of freedom (equal
to the number of levels for a given parameter minus one) are associated with selecting an
orthogonal array [25]. In this investigation, 27 experiments were conducted, with three sets
of experiments for each of the nine parameter combinations. The effectiveness of various
coolant flow types (dry, flood, and minimum quantity lubrication) was evaluated for each
parameter combination. Table 1 outlines the parameters and corresponding levels utilized
in this study.

Table 1. Parameters and levels used in the experiment.

S. No Parameters Symbol Units Levels

1 Cutting speed v mm/min Low: 105, Med: 130, High: 155
2 Feed f mm/rev Low: 0.10, Med: 0.15, High: 0.20
3 Depth of cut d mm Low: 0.10, Med: 0.15, High: 0.20
4 Coolant flow type (categorical factor) CF - Dry, Flood, MQL

3. Multiresponse Optimization Using Grey Relational Analysis

Grey relational analysis (GRA) has been demonstrated to be highly effective for
optimizing situations involving multiple performance characteristics. By optimizing a
single parameter known as the grey relational grade, GRA permits the transformation of
a multiobjective optimization problem into a single-objective optimization problem [26].
The GRA analysis consists of three main steps: preprocessing the raw data, estimating the
grey relational coefficients, and calculating the grey relational grade. The original data are
normalized to dimensionless values between 0 and 1 during preprocessing. Normalization
varies depending on the sort of quality attribute [27]. For the surface roughness (Ra),
which follows the “smaller-the-better” criterion, normalization is performed utilizing the
following equation:

x∗i (k) =
max x0(k)− xi(k)

max x0(k)− min x0(k)
(2)

And for the material removal rate (MRR), which follows the “larger-the-better” crite-
rion, normalization is performed utilizing the following equation:

x∗i (k) =
xi(k)− min x0(k)

max xi(k)− min xi(k)
(3)

where x0(k) is the original sequence, x∗i (k) the sequence after the data preprocessing,
max xi(k) the largest value of xi(k), and min xi(k) the smallest value of xi(k). The second
step involves the calculation of the grey relational coefficient, which helps establish a rela-
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tionship between the actual normalized sequence and the ideal or reference sequence [27].
This relationship can be expressed mathematically, as shown in the following equation:

ζi(k) =
δmin + ζδmax

δi(k) + ζδmax
(4)

where δ0i(k) is the deviation sequence of the reference sequence, and ζ is the distinguishing
or identification coefficient: ζ ∈ [0, 1]. However, a ζ of 0.5 is generally used. The final step
involves the calculation of the weighted grey relational grade using the following equation:

Weighted GRG = (0.5 × ζi(k) for Ra) + (0.5 × ζi(k) for MRR) (5)

The weighted grey relational grade is the weighted sum of the estimated grey rela-
tional coefficients. Due to their similar importance in the machining process, both response
variables (MRR and Ra) were allotted equal weights of 50% each in this study. The GRA
technique was chosen for its ability to handle multiple performance characteristics simul-
taneously. It transforms a multiobjective optimization problem into a single-objective
optimization problem by optimizing a single parameter known as the grey relational grade.
This makes it particularly suitable for our study, where we are dealing with multiple ma-
chining parameters and their effects on the surface roughness and material removal rate.
The GRA technique allows us to evaluate the performance of different parameters and their
levels in a comprehensive and efficient manner.

4. Results and Discussion

This study’s experimental investigation aimed to determine the effect of machining
parameters and coolant flow type on the surface roughness (Ra) ) and material removal
rate (MRR). The experimental data are presented in Table 2. From the preliminary analysis
of the data, there does not seem to be an obvious trend that indicates which parameter has
the greatest effect on the Ra, and it seems to be sensitive to a combination of parameters as
opposed to a singular factor. For MRR, greater values of f and d correspond to an increase in
MRR. This observation highlights the complexity of the manufacturing procedure, in which
multiple variables interact to determine the ultimate results.

Table 2. Experimental data.

S. No. Speed Feed Depth of Cut Type of Coolant Surface Roughness Material Removal Rate MRR
v (mm/min) f (mm/rev) d (mm) Flow CF Ra (µm)

Trial 1 1 1 1 1 1.78 6.64
Trial 2 1 2 2 2 3.21 12.27
Trial 3 1 3 3 3 3.13 18.66
Trial 4 2 1 2 3 1.52 10.04
Trial 5 2 2 3 1 3.02 19.10
Trial 6 2 3 1 2 3.49 11.61
Trial 7 3 1 3 2 2.41 16.03
Trial 8 3 2 1 3 1.55 10.08
Trial 9 3 3 2 1 2.97 17.73

The regression models for the surface roughness given by Equations (6)–(8) for CF = 1,
2, and 3 revealed the combined effect of v, f , d, and CF on the surface roughness. From the
equations, it can be inferred that as v increases, the Ra decreases, as denoted by the negative
sign preceding the coefficient of v. On the other hand, the positive sign for f , d, and CF
suggests that an increase in these variables causes an increase in the Ra. In a regression
model, the constant term (also known as the intercept) represents the average expected
value of the response variable when all predictor variables are set to zero [28].

Ra = 1.113 − 0.1983v + 0.6467 f + 0.2911d (6)
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Ra = 1.554 − 0.1983v + 0.6467 f + 0.2911d (7)

Ra = 0.588 − 0.1983v + 0.6467 f + 0.2911d (8)

It can be interpreted as the average surface roughness (Ra) for each form of CF when v,
f , and d are set to zero. The fact that the constant varies with each form of CF indicates that
the CF has a baseline effect on the surface roughness that is independent of the other factors
(v, f , and d). Even before v, f , and d enter into play, the average Ra is highest when CF = 2
and lowest when CF = 3, for instance. Before contemplating the machining parameters,
the constant terms for each CF level indicate that the choice of coolant flow can significantly
impact the surface roughness. This understanding could influence the selection of coolant
flow during the machining process to optimize the surface roughness. In addition, the
ANOVA results in Table 3 statistically validate the regression models, revealing that the
contribution of the feed to the total sum of squares is the highest, followed by the coolant
flow type and depth of cut, emphasizing their importance in influencing the Ra. However,
the cutting speed demonstrated the least influence.

Table 3. ANOVA results for surface roughness.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 5 4.65879 98.69% 4.65879 0.93176 45.23 0.005
v 1 0.23602 5.00% 0.23602 0.23602 11.46 0.043
f 1 2.50907 53.15% 2.50907 2.50907 121.79 0.002
d 1 0.50847 10.77% 0.50847 0.50847 24.68 0.016
CF 2 1.40523 29.77% 1.40523 0.70262 34.10 0.009
Error 3 0.06181 1.31% 0.06181 0.02060
Total 8 4.72060 100.00%

The Taguchi analysis reconfirmed these results by identifying the feed as the most
influential factor on the Ra, followed by the coolant flow type, depth of cut, and cutting
speed. This validated the prior analysis and highlighted the significance of optimizing f
and CF for an enhanced surface finish. Table 4 is the response table of means depicting the
greatest delta value for f (1.293). Figure 1 depicts the obtained main effect plots, where the
steep line for f was observed again.

Table 4. Response table of means for surface roughness.

Level v f d CF

1 2.706 1.903 2.271 2.592
2 2.678 2.592 2.568 3.033
3 2.309 3.197 2.853 2.067
Delta 0.397 1.293 0.582 0.967
Rank 4 1 3 2

The regression models for the MRR given by Equations (9)–(11) for CF = 1, 2, and 3
revealed that all four factors v, f , d, and CF play significant roles in determining the MRR,
with the depth of cut being the most influential parameter. This result is consistent with the
practical comprehension of machining processes, according to which deeper cuts remove
material more rapidly, thereby increasing the MRR.

MRR = −1.186 + 1.044v + 2.547 f + 4.246d (9)

MRR = −2.372 + 1.044v + 2.547 f + 4.246d (10)

MRR = −2.748 + 1.044v + 2.547 f + 4.246d (11)
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Figure 1. Mean effect plot for surface roughness.

Different intercepts in each model suggest that the type of coolant flow influences
the basal MRR. Specifically, the models indicate that the MRR decreases as we transition
from arid conditions to a flood-type coolant flow and decreases further as we switch to
a minimal quantity lubrication flow type. As the MRR cannot be negative in practical
situations, these values represent the intercept term in the regression model rather than
a direct physical interpretation. The ANOVA results presented in Table 5 support the
conclusion by disclosing that the greatest sum of squares was associated with the depth of
cut, followed by the feed and cutting speed, indicating their significant contribution to the
total variation inMRR. Despite having a lesser impact, the coolant flow type, nonetheless,
performed a significant role.

Table 5. ANOVA results for material removal rate.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 5 157.613 99.69% 157.613 31.523 189.95 0.001
v 1 6.545 4.14% 6.545 6.545 39.44 0.008
f 1 38.930 24.62% 38.930 38.930 234.58 0.001
d 1 108.148 68.40% 108.148 108.148 651.67 0.000
CF 2 3.990 2.52% 3.990 1.995 12.02 0.037
Error 3 0.498 0.31% 0.498 0.166
Total 8 158.111 100.00%

Taguchi’s analysis confirmed these findings by identifying the depth of cut as the most
influential factor for the MRR, followed by the feed, cutting speed, and coolant flow type.
It revealed the possibility of optimizing machining parameters to increase the MRR. Table 6
represents the response table of means, in which the maximum delta value for the depth of
cut (8.491) is found. Figure 2 depicts the obtained main effect plots, in which the steep line
for the depth of cut is observed once again.

The conducted analyses provide valuable insights for process optimization in ma-
chining operations by highlighting the importance of the cutting speed, feed, depth of
cut, and coolant flow type on the surface roughness and material removal rate. The ob-
tained results can assist industry professionals in improving the efficacy and quality of
their processes. However, it is important to note that these results may vary with various
materials and machining conditions, highlighting areas for future research. Based on the
experimental data, the GRA was utilized to comprehend the interrelationships between the
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machining parameters and their impacts on the Ra and MRR. Table 7 provides the results
of this analysis.

Table 6. Response table of means for material removal rate.

Level v f d CF

1 12.523 10.904 9.441 14.489
2 13.582 13.814 13.344 13.302
3 14.612 15.999 17.932 12.927
Delta 2.089 5.094 8.491 1.562
Rank 3 2 1 4

Figure 2. Mean effect plot for material removal rate.

Table 7. Results of grey relational analysis.

Trial v f d CF Ra MRR GRG Rank

1 1 1 1 1 0.158 0.802 0.653 7
2 1 2 2 2 0.313 0.245 0.437 8
3 1 3 3 3 0.313 0.033 0.337 9
4 2 1 2 3 0.125 0.350 0.525 5
5 2 2 3 1 0.313 0.010 0.497 6
6 2 3 1 2 0.438 0.247 0.479 8
7 3 1 3 2 0.188 0.388 0.642 2
8 3 2 1 3 0.125 0.350 0.525 5
9 3 3 2 1 0.313 0.123 0.420 9

According to the obtained grey relational grade (GRG), the combination with a speed
of 130 mm/min, a feed of 0.1 mm/rev, a depth of cut 0.15 mm, and the third type of coolant
flow (MQL) produced the best results with a GRG of 0.653, ranking first among all other
parameter combinations. Intriguingly, the second-best combination in terms of GRG also
operated at 130 mm/min but with a higher feed (0.15 mm/rev), a greater depth of cut
(0.2 mm), and under dry cutting conditions (CF). This indicates that, despite the increased
feed rate and depth of cut, the surface roughness was maintained at a lower level due to
the high cutting speed and dry cutting conditions, while the MRR was maximized. On
the opposite extreme of the spectrum, the parameter set with the lowest GRG consisted
of a cutting speed of 130 mm/min, a high feed of 0.2 mm/rev, a shallow depth of cut
(0.1 mm), and a coolant flow that was continuous (Flood). This led to an increase in the
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surface irregularity and a decrease in the material removal rate. Even with a reduced depth
of cut, the increased feed rate appeared to have resulted in a poorer surface finish.

Despite the continuous flow of the coolant, the MRR was not maximized, indicating
that other parameters, such as the cutting speed and depth of cut, were more influential.
The GRA revealed the optimal machining parameters for harmonizing the surface rough-
ness (Ra) and material removal rate (MRR). Under minimal quantity lubrication conditions
(CF = 3), the greatest results were significantly obtained with higher feed rates, a slower
speed, and moderate depths of cut. While the findings of this study provide valuable
insights into the machining of EN8 steel under different coolant flows, it is important
to note certain limitations. The results are specific to the material (EN8 steel) and the
machining conditions tested in this study. Therefore, the generalizability of the findings
to other materials and machining conditions may not be direct and would require further
investigation. Future research could extend this work by exploring other materials and
varying machining conditions. In addition to the academic contributions of this study,
there are several practical implications worth noting. The findings of this study provide
valuable insights for industry professionals seeking to optimize their machining processes.
Specifically, the results indicate that the best results are generally obtained with higher
speeds, lower feed rates, and moderate depths of cut under minimal quantity lubrication
conditions. This information could be used to guide decision-making in real-world ma-
chining operations, potentially leading to improvements in efficiency and product quality.
However, it is important to note that these results are specific to the machining of EN8
steel under the conditions tested in this study. Therefore, the direct applicability of these
findings to other materials and machining conditions may require further investigation.

5. Conclusions

The present study examined how machining factors affect the surface roughness
(Ra) and material removal rate (MRR). The cutting speed, feed, depth of cut, and coolant
flow type (CF) were studied. Regression models, ANOVA, Taguchi’s L9 orthogonal array,
and GRA, were used to assess these parameters’ effects on the Ra and MRR. The feed rate
(f), coolant flow (CF), and depth of cut (d) have the greatest impact on the surface roughness
(Ra). The Ra was least affected by the cutting speed. The study showed that the coolant
flow type affects the Ra before machining settings. The material removal rate (MRR) was
most affected by the depth of cut (d), feed (f ), and cutting speed (v). The MRR was slightly
affected by the coolant flow type (CF). As the coolant flow changed from dry to continuous
to minimal quantity lubrication, the baseline MRR decreased. The GRA results revealed
the optimum machining parameters and coolant flow type for the surface roughness and
material removal rate. Higher speeds, lower feed rates, and moderate depths of cut under
minimal quantity lubrication (CF = 3) produced the greatest results. This study will help
industrial professionals optimize machining operations for efficiency and quality.
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