

Proceeding Paper Multimodal Deep Learning in Early Autism Detection—Recent Advances and Challenges[†]

Sheril Sophia Dcouto 🗅 and Jawahar Pradeepkandhasamy *

Department of Computer Applications, School of Computing, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil 626126, Tamil Nadu, India; sherilsophia@gmail.com

* Correspondence: j.pradeepkandasamy@klu.ac.in

[†] Presented at the International Conference on Recent Advances in Science and Engineering, Dubai, United Arab Emirates, 4–5 October 2023.

Abstract: Autism spectrum disorder (ASD) is a global concern, with a prevalence rate of approximately 1 in 36 children according to estimates from the Centers for Disease Control and Prevention (CDC). Diagnosing ASD poses challenges due to the absence of a definitive medical test. Instead, doctors rely on a comprehensive evaluation of a child's developmental background and behavior to reach a diagnosis. Although ASD can occasionally be identified in children aged 18 months or younger, a reliable diagnosis by an experienced professional is typically made by the age of two. Early detection of ASD is crucial for timely interventions and improved outcomes. In recent years, the field of early diagnosis of ASD has been greatly impacted by the emergence of deep learning models, which have brought about a revolution by greatly improving the accuracy and efficiency of ASD detection. The objective of this review paper is to examine the recent progress in early ASD detection through the utilization of multimodal deep learning techniques. The analysis revealed that integrating multiple modalities, including neuroimaging, genetics, and behavioral data, is key to achieving higher accuracy in early ASD detection. It is also evident that, while neuroimaging data holds promise and has the potential to contribute to higher accuracy in ASD detection, it is most effective when combined with other modalities. Deep learning models, with their ability to analyze complex patterns and extract meaningful features from large datasets, offer great promise in addressing the challenge of early ASD detection. Among various models used, CNN, DNN, GCN, and hybrid models have exhibited encouraging outcomes in the early detection of ASD. The review highlights the significance of developing accurate and easily accessible tools that utilize artificial intelligence (AI) to aid healthcare professionals, parents, and caregivers in early ASD symptom recognition. These tools would enable timely interventions, ensuring that necessary actions are taken during the initial stages.

Keywords: autism spectrum disorder (ASD); neuroimaging; deep learning (DL); artificial intelligence (AI); multimodal

1. Introduction

Autism spectrum disorder (ASD) is a developmental condition affecting 1–2% of children worldwide, causing social interaction challenges, communication difficulties, and repetitive behaviors. Figure 1 shows the issues faced by children with ASD. Genetics and environmental factors significantly impact its development. Advances in diagnosis provide hope for improved outcomes [1–4]. ASD individuals face challenges such as social interaction difficulties, communication issues, repetitive behaviors, and sensory sensitivities [5–8]. The assessment and diagnosis of ASD largely rely on traditional clinical evaluations that have been utilized for several decades, as shown in Figure 2. Deep learning techniques are increasingly used for ASD detection, and integrate data from various sources to enhance accuracy [9]. The choice of modalities depends on available data and research

Citation: Dcouto, S.S.;

Pradeepkandhasamy, J. Multimodal Deep Learning in Early Autism Detection—Recent Advances and Challenges. *Eng. Proc.* **2023**, *59*, 205. https://doi.org/10.3390/ engproc2023059205

Academic Editors: Nithesh Naik, Rajiv Selvam, Pavan Hiremath, Suhas Kowshik CS and Ritesh Ramakrishna Bhat

Published: 23 January 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). goals [10]. Deep learning (DL) methods are increasingly used in early ASD detection and for analyzing data from neuroimaging, behavioral observations, and speech [11]. This enhances diagnostic accuracy and timeliness, potentially improving outcomes [12]. fMRI and sMRI play vital roles in accurate diagnosis [13]. AI-based CAS employs both ML and DL approaches, but DL techniques are underutilized [14–16]. Advancements in ASD diagnostics use DL models, combining neuroimaging methods with ML and DL, to identify early biological markers [17–19]. Lightweight CNN models show high accuracy, precision, and F1 score. Challenges include data quality, interpretability, generalizability, and ethical considerations [14,20].

Impaired Language Spatial Memory Difficulties Hyperactivity Behavior Problems Social Contact

Autism Spectrum Disorder (ASD)

Figure 1. Behavioral issues in ASD children.

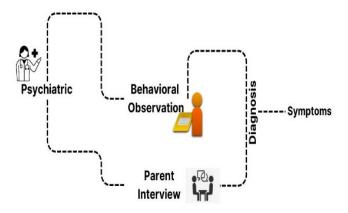


Figure 2. Traditional clinical evaluation for ASD.

2. Methodology

This systematic review uses PRISMA methodology to analyze early ASD detection advancements using multimodal DL techniques. It employs structured research methods, including clear questions, eligibility criteria, literature search, systematic screening, and data extraction. The review discusses implications and challenges, considering strengths and limitations. A systematic search approach was used to evaluate each article's suitability to address the research questions. In this review, databases like Google Scholar, PubMed, and IEEE were used to acquire the current study of neurodevelopmental disorders in children using machine learning techniques. Relevant articles were shortlisted using keywords like "Deep Learning" and "Autism Spectrum Disorder". Figure 3 shows the flow and the number of articles identified through different sources, which focused on publications from 2019–2023. After thorough examination of titles, abstracts, and full contents, 35 articles were selected for further analysis.

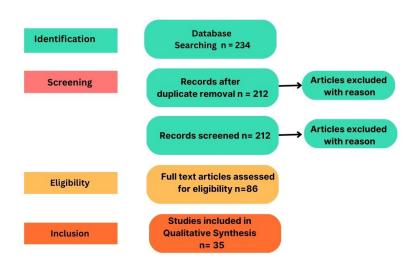


Figure 3. PRISMA review methodology.

3. Data Synthesis and Analysis

Several studies have delved into recent advancements in early ASD detection through multimodal DL techniques using neuroimaging and non-neuroimaging data. Khodatars et al. [9] explored DL and AI's role in precise ASD diagnosis and rehabilitation, offering insights for future research directions. de Belen et al. [21] highlighted the effectiveness of computer vision analysis in quantifying ASD markers, benefiting diagnosis and therapy. Feng et al. [22] assessed ML and DL methods for fMRI-based ASD classification and recognition, discussing performance and challenges in early diagnosis. Haweel et al. [23] investigated the potential of deep learning techniques using TfMRI for early ASD diagnosis and the identification of autism biomarkers. Table 1 shows a summary of multimodal DL techniques using neuroimaging and non-neuroimaging techniques in ASD detection.

Table 1. Summary of multimodal DL techniques in ASD detection as reported in previous studies.

Author	Model Used	Feature Used	Accuracy	Modality Used
Ming Li [24]	CNN+RNN	Open SMILE and CQT spectrogram	88.1%	Behavior signal, speech
Yang et al. [25]	ASSDL	Neuroimaging	98.2%	fMRI
Huang et al. [26]	DBN	Graph-based feature selection (GBFS)	76.4%	fMRI from ABIDE
Pan et al. [27]	GCN	Brain imaging	87.62%	fMRI from ABIDE I
Niu et al. [28]	DANN	Multi scale brain functional connectom	73.2%	rs-fMRI and PC data from ABIDE
Ahmed et al. [29]	Mobile Net Xception InceptionV3	Facial features	95% 94% 89%	Facial images
Saputra et al. [30]	CNN	rs-fMRI and task-fMRI BOLD signals, and aberrations in brain disorders	89.58%	Brain MRI, clinical and behavioural markers, electroencephalography indices
Liao et al. [31]	CNN	Features fusion	87.50%	Eye fixation, facial expression, and EEG
Sharif, and Khan, [32]	CNN	Corpuscallosum	55.93%	Neuroimaging data, EEG, speech, Kinesthetic
Epalle et al. [33]	MISO-DNN	Features fusion	79.13%	MRI

	Table 1. Cont.			
Author	Model Used	Feature Used	Accuracy	Modality Used
Ke et al. [34]	2D/3D CNN	Spatial transformer network (STN) and classification activation mapping (CAM)	89%	MRI
Almuqhim and Saeed, [35]	ASD-SAENet	Sparse autoencoder (SAE)	70.8%	fMRI
Lee et al. [36]	BLSTM	eGeMAPS speech feature	68.18%	ADOS-2, ADI-R, BeDevel-I, BeDevel-P, K-CARS, SCQ, and SRS
Rahman and Subashini [37]	DNN	Feature fusion	97.18%	QCHAT and QCHAT-10
Saranya and Anandan, [38]	DEAF	Multimodal features	96.5	Facial fusion emotions and human gait sequences
Shao et al. [39]	GCN	Deep features	79.5%	fMRI from ABIDE
Israr Ahmad [40]	ResNet50	Facial Features	92%	Facial Images
Subah et al. [41]	DNN	Brain atlases	88%	rs-fMRI
Tang et al. [42]	Deep multimodal model	fMRI scan and ROI signal intensities	74%	fMRI
Han et al. [43]	MMSDAE	Feature fusion	95.56%	EEG and ET
Kong et al. [44]	DNN	Individual brain network with connectivity features between pairs of ROIs	90.39%	MRI from ABIDE I
Liu et al., 2020 [45]	DFC	MTFS	76.8%	fMRI from ABIDE I
Arya et al. [46]	3D CNN-GCN model	Feature fusion	64.23%	rs-fMRI
Eslami et al. [47]	ASD-DiagNet	Correlated and anticorrelated connections of the brain	70.3%	fMRI from ABIDE-I
Zhang et al. [48]	SC-CNN	Temporal feature	68.6%	Re-fMRI
	MobileNet		92.81%,	

Rahman and Subashini, [49]	Xception EfficientNet B0 EfficientNet B1 EfficientNet B2	Static facial features	96.63%, 93.38%, 95.06%, 94.31%	Face photos
Wang et al. [50]	maLRR	AAL	74.62%	fMRI
Baygin et al. [51]	Hybrid Lightweight Deep Feature Generation (MobileNetV2, ShuffleNet, SqueezeNet)	Deep feature	96.44%	EEG
Zhang et al. [52]	GCN	Deepfusion	95%	EEG
Wang et al. [53]	DL with SVM-RFE	Feature self-taught learning network	93.59%	rs-fMRI
Haweel et al. [23]	CNN	Speech task facial features	80%	sMRI, TfMRI and rs-fMRI
Abbas et al. [54]	DeepMNF	Spatio temporal features	75%	rs-fMRI and sMRI
Rakhimberdina Z, Liu, and Murata [55]	Graph-based multi-model ensemble	RSFC and phenotypic features	73.13%	fMRI from ABIDE

Author	Model Used	Feature Used	Accuracy	Modality Used
Mostafa and Wu [56]	CAE	Lines, shapes, specific objects	96.2%	T1-weighted MRI, rs-fMRI
Sherkatghanad et al. [57]	CNN	Connectomes	70.22%	rs-fMRI from ABIDE

Table 1. Cont.

4. Modalities Used in ASD Detection

In the detection of autism spectrum disorder (ASD), a combination of neuroimaging and non-neuroimaging techniques is employed to assess various aspects of an individual's behavior, cognition and neurological function. Table 2 gives an overview of both types of modalities used to detect autism spectrum disorder at an early stage.

Table 2. Various deep learning ASD detection modalities using neuroimaging and non-neuroimaging techniques and their description.

	Neuroimaging		
Functional Magnetic Resonance Imaging (fMRI)	 FMRI measures brain blood flow, revealing activity and connectivity. FMRI aids in ASD detection using DL to analyze activation patterns and neural circuits. 		
Electroencephalography (EEG)	 EEG captures brain signals. Enabling deep learning models to identify ASD-related patterns in brain activity through electrodes. 		
Electromyography (EMG)	 EMG measures muscle electrical activity, revealing motor function and ASD impairments. Used in deep learning techniques to detect motor abnormalities early. 		
	Non-Neuroimaging		
Eye-Tracking (ET)	 Eye-tracking technology monitors eye movements and gaze patterns Enabling deep learning models to identify ASD-related gaze behaviors, aiding social communication assessment. 		
Speech and Language Analysis	 Identifying distinctive speech characteristics. Deep learning models analyze speech data to extract acoustic, prosodic, and linguistic features for diagnosing ASD, 		
Behavioral Data	 It observes and assesses an individual's behavior. Deep learning models identify ASD traits and patterns, improving accuracy and reliability through integration with other modalities. 		
Genetic Data	 Genetic data in ASD detection enhances research, enhancing diagnosis and treatment strategies. DL integration with neuroimaging and behavioral data. 		

5. Deep Learning Models

Various neural network models are pivotal in improving ASD detection. CNNs excel at tasks like facial analysis, eye-tracking, and speech analysis, enhancing diagnostic accuracy and enabling personalized interventions [30–32]. DNNs are proficient at extracting complex patterns, aiding early detection, diagnosis, and personalized interventions [37,41,44]. RNNs are instrumental when analyzing sequential data and speech transcripts, supporting early screening and personalized interventions [24]. GCNs contribute by capturing relationships in neuroimaging and social interaction graphs, improving diagnostic accuracy

and advancing ASD research [27,39,52]. These neural network models collectively enhance ASD detection across diverse data modalities.

6. Performance Analysis

The analysis shown in Table 1 presents the accuracy results from various ASD classification models, demonstrating advancements in deep learning for ASD detection. Highperforming models include ASDL (98.2%), EfficientNetB1 (95.06%), CNN (94%), and MobileNet (95%). Competitively performing models include CNN (87.50%) and GCN (79.5%), while BLSTM (68.18%) and Graph-based multi-model ensemble (73.13%) achieve lower accuracies. This underscores the importance of choosing appropriate deep learning architectures for accurate ASD classification, offering insights for future research and clinical applications.

7. Research Gaps and Future Directions

The literature review identified several limitations in ASD detection, including limited multimodal data-based studies, lack of longitudinal studies, lack of explainability and interpretability, limited data size, and overall limitations. These issues require future research to address neuroimaging, genetic information, and behavioral assessments for improved accuracy and reliability. Addressing these issues is crucial for enhancing effectiveness and reliability in diverse datasets and populations.

Multimodal data integration in ASD detection faces challenges in feature integration, interpretability, and data consistency. Robust fusion techniques are needed for resource-intensive data collection. Collaboration with clinicians is crucial for practical effectiveness. Online learning and adaptive models are essential. Longitudinal analysis is crucial for personalized treatment plans. Innovations in DL models improve prediction accuracy and treatment strategies.

8. Conclusions

This review highlights recent advancements in early ASD detection using multimodal deep learning techniques, enhancing accuracy and objectivity. These techniques integrate behavioral, genetic, and neuroimaging data, enabling personalized interventions and standardized assessment processes. However, further research is needed to address challenges like improved detection accuracy, data availability and interpretability. Multimodal deep learning techniques for early ASD detection offer significant scientific implications, improving accuracy and reducing diagnostic inconsistencies. By integrating behavioral, genetic, and neuroimaging data, these techniques enable standardized assessments, personalized interventions, and large-scale screening. However, further research and validation are needed before widespread implementation in clinical settings.

Author Contributions: All authors discussed the contents of the manuscript. S.S.D. contributed to the research idea, database searching, filtering of papers and comparison study with conclusion, and writing; J.P. reviewed and suggested changes to the manuscript and to the flow of study to be followed. All authors have read and agreed to the published version of the manuscript.

Funding: The research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments: The authors would like to thank the reviewers for the constructive comments, which improved overall quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Attention based semi-supervised dictionary learning Deep belief network Graph convolutional networks Regions of interest
Anatomical automatic labeling
Resting-state fMRI
Personal characteristic
Multi-input single-output deep neural network
Autism diagnostic observation schedule, second edition
Bidirectional long short-term memory
Autism diagnostic interview, revised
Behavior development screening for toddlers interview
Behavior development screening for toddlers play
Korean version of the childhood autism rating scale
Social communication questionnaire
Social responsiveness scale
Quantitative checklist for autism in toddlers
Multichannel deep attention neural network
Deep neural network
Deep extreme adaptive fuzzy
Real-time analysis of precursors for intervention and detection
Multi-task feature selection
Geneva minimalistic acoustic parameter set
Multimodal stacked denoising autoencoder
Dynamic functional connectivity
Separated channel convolutional neural network
Convolutional autoencoder
Resting-state functional connectivity
Deep multimodal neuroimaging framework
multi-site adaption framework via low-rank representation
Anatomical automatic labeling
Preferred reporting items for systematic reviews and meta-analyses
Autism brain imaging data exchange

References

- Bjørklund, G.; Pivina, L.; Dadar, M.; Meguid, N.A.; Semenova, Y.; Anwar, M.; Chirumbolo, S. Gastrointestinal alterations in autism spectrum disorder: What do we know? *Neurosci. Biobehav. Rev.* 2020, *118*, 111–120. [CrossRef] [PubMed]
- Reddy, G.; Fewster, D.L.; Gurayah, T. Parents' voices: Experiences and coping as a parent of a child with autism spectrum disorder. S. Afr. J. Occup. Ther. 2019, 49, 43–50. [CrossRef]
- Wiśniowiecka-Kowalnik, B.; Nowakowska, B.A. Genetics and epigenetics of autism spectrum disorder—Current evidence in the field. J. Appl. Genet. 2019, 60, 37–47. [CrossRef] [PubMed]
- Schaaf, C.P.; Betancur, C.; Yuen, R.K.; Parr, J.R.; Skuse, D.H.; Gallagher, L.; Bernier, R.A.; Buchanan, J.A.; Buxbaum, J.D.; Chen, C.A.; et al. A framework for an evidence-based gene list relevant to autism spectrum disorder. *Nat. Rev. Genet.* 2020, 21, 367–376. [CrossRef]
- Kong, C.; Chen, A.; Ludyga, S.; Herold, F.; Healy, S.; Zhao, M.; Taylor, A.; Müller, N.G.; Kramer, A.F.; Chen, S.; et al. Associations between meeting 24-hour movement guidelines and quality of life among children and adolescents with autism spectrum disorder. J. Sport Health Sci. 2023, 12, 73–86. [CrossRef]
- 6. Tomczak, M.T. How can the work environment be redesigned to enhance the well-being of individuals with autism? *Empl. Relat. Int. J.* **2022**, *44*, 1467–1484. [CrossRef]
- Singh, D.; Rakhra, M.; Aggarwal, S. Autism Spectrum Disorder Detection using theDeep Learning Approaches. In Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 10–12 October 2022; pp. 761–766.
- Yen, C.; Chiang, M.C. Examining the effect of online advertisement cues on human responses using eye-tracking, EEG, and MRI. Behav. Brain Res. 2021, 402, 113128. [CrossRef]
- Khodatars, M.; Shoeibi, A.; Sadeghi, D.; Ghaasemi, N.; Jafari, M.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Zare, A.; Kong, Y.; et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review. *Comput. Biol. Med.* 2021, 139, 104949. [CrossRef]

- Albahri, A.S.; Al-Qaysi, Z.T.; Alzubaidi, L.; Alnoor, A.; Albahri, O.S.; Alamoodi, A.H.; Bakar, A.A. A systematic review of using deep learning technology in the steady-state visually evoked potential-based brain-computer interface applications: Current trends and future trust methodology. *Int. J. Telemed. Appl.* 2023, 2023, 7741735. [CrossRef]
- Zwaigenbaum, L.; Brian, J.A.; Ip, A. Early detection for autism spectrum disorder in young children. *Paediatr. Child Health* 2019, 24, 424–432. [CrossRef]
- McCarty, P.; Frye, R.E. Early detection and diagnosis of autism spectrum disorder: Why is it so difficult? *Semin. Pediatr. Neurol.* 2020, 35, 100831. [CrossRef] [PubMed]
- Lu, P.; Li, X.; Hu, L.; Lu, L. Integrating genomic and resting State fMRI for efficient autism spectrum disorder classification. *Multimed. Tools Appl.* 2022, *81*, 19183–19194. [CrossRef]
- Moridian, P.; Ghassemi, N.; Jafari, M.; Salloum-Asfar, S.; Sadeghi, D.; Khodatars, M.; Shoeibi, A.; Khosravi, A.; Ling, S.H.; Subasi, A.; et al. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. *Front. Mol. Neurosci.* 2022, 15, 999605. [CrossRef] [PubMed]
- Zhu, F.L.; Wang, S.H.; Liu, W.B.; Zhu, H.L.; Li, M.; Zou, X.B. A multimodal machine learning system in early screening for toddlers with autism spectrum disorders based on the response to name. *Front. Psychiatry* 2023, 14, 1039293. [CrossRef]
- Mohanty, A.S.; Parida, P.; Patra, K.C. Usage of ML Techniques for ASD Detection: A Comparative Analysis of Various Classifiers. In *Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications*; CRC Press: Boca Raton, FL, USA, 2022; pp. 91–112.
- 17. Kaur, P.; Kaur, A. Review of progress in diagnostic studies of autism spectrum disorder using neuroimaging. *Interdiscip. Sci. Comput. Life Sci.* 2023, 15, 111–130. [CrossRef]
- 18. Kohli, M.; Kar, A.K.; Sinha, S. The role of intelligent technologies in early detection of autism spectrum disorder (asd): A scoping review. *IEEE Access* 2022, *10*, 104887–104913. [CrossRef]
- Dawson, G.; Bernier, R. A quarter century of progress on the early detection and treatment of autism spectrum disorder. *Dev. Psychopathol.* 2013, 25, 1455–1472. [CrossRef]
- 20. Sundas, A.; Badotra, S.; Rani, S.; Gyaang, R. Evaluation of autism spectrum disorder based on the healthcare by using artificial intelligence strategies. *J. Sens.* 2023, 2023, 5382375. [CrossRef]
- 21. de Belen RA, J.; Bednarz, T.; Sowmya, A.; Del Favero, D. Computer vision in autism spectrum disorder research: A systematic review of published studies from 2009 to 2019. *Transl. Psychiatry* **2020**, *10*, 333. [CrossRef]
- 22. Feng, W.; Liu, G.; Zeng, K.; Zeng, M.; Liu, Y. A review of methods for classification and recognition of ASD using fMRI data. J. Neurosci. Methods 2022, 368, 109456. [CrossRef]
- Haweel, R.; Shalaby, A.; Mahmoud, A.; Seada, N.; Ghoniemy, S.; Ghazal, M.; Casanova, M.F.; Barnes, G.N.; El Baz, A. A robust DWT–CNN-based CAD system for early diagnosis of autism using task-based fMRI. *Med. Phys.* 2021, 48, 2315–2326. [CrossRef]
- 24. Li Ming Tang, D.; Zeng, J.; Zhou, T.; Zhu, H.; Chen, B.; Zou, X. An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases related to autism spectrum disorder. *Comput. Speech Lang.* **2019**, *56*, 80–94.
- Yang, M.; Zhong, Q.; Chen, L.; Huang, F.; Lei, B. Attention based semi-supervised dictionary learning for diagnosis of autism spectrum disorders. In Proceedings of the 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, China, 8–12 July 2019; pp. 7–12.
- Huang, Z.A.; Zhu, Z.; Yau, C.H.; Tan, K.C. Identifying autism spectrum disorder from resting-state fMRI using deep belief network. *IEEE Trans. Neural Netw. Learn. Syst.* 2020, 32, 2847–2861. [CrossRef] [PubMed]
- Pan, L.; Liu, J.; Shi, M.; Wong, C.W.; Chan KH, K. Identifying autism spectrum disorder based on individual-aware down-sampling and multi-modal learning. *arXiv* 2021, arXiv:2109.09129.
- Niu, K.; Guo, J.; Pan, Y.; Gao, X.; Peng, X.; Li, N.; Li, H. Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data. *Complexity* 2020, 2020, 1357853. [CrossRef]
- Ahmed, Z.A.; Aldhyani, T.H.; Jadhav, M.E.; Alzahrani, M.Y.; Alzahrani, M.E.; Althobaiti, M.M.; Alassery, F.; Alshaflut, A.; Alzahrani, N.M.; Al-Madani, A.M. Facial features detection system to identify children with autism spectrum disorder: Deep learning models. *Comput. Math. Methods Med.* 2022, 2022, 3941049. [CrossRef]
- Saputra DC, E.; Maulana, Y.; Win, T.A.; Phann, R.; Caesarendra, W. Implementation of Machine Learning and Deep Learning Models Based on Structural MRI for Identification of Autism Spectrum Disorder. *JurnalIlmiah Tek. ElektroKomputer Dan Inform.* (*JITEKI*) 2023, 9, 307–318.
- 31. Liao, M.; Duan, H.; Wang, G. Application of machine learning techniques to detect the children with autism spectrum disorder. *J. Healthc. Eng.* **2022**, 2022, 9340027. [CrossRef]
- 32. Sharif, H.; Khan, R.A. A novel machine learning based framework for detection of autism spectrum disorder (ASD). *Appl. Artif. Intell.* **2022**, *36*, 2004655. [CrossRef]
- Epalle, T.M.; Song, Y.; Liu, Z.; Lu, H. Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results. *Appl. Soft Comput.* 2021, 107, 107375. [CrossRef]
- 34. Ke, F.; Choi, S.; Kang, Y.H.; Cheon, K.A.; Lee, S.W. Exploring the structural and strategic bases of autism spectrum disorders with deep learning. *IEEE Access* 2020, *8*, 153341–153352. [CrossRef]
- 35. Almuqhim, F.; Saeed, F. ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. *Front. Comput. Neurosci.* **2021**, *15*, 654315. [CrossRef] [PubMed]

- 36. Lee, J.H.; Lee, G.W.; Bong, G.; Yoo, H.J.; Kim, H.K. Deep-learning-based detection of infants with autism spectrum disorder using auto-encoder feature representation. *Sensors* 2020, 20, 6762. [CrossRef] [PubMed]
- 37. Mujeeb Rahman, K.K.; Monica Subashini, M. A deep neural network-based model for screening autism spectrum disorder using the quantitative checklist for autism in toddlers (QCHAT). *J. Autism Dev. Disord.* **2022**, *52*, 2732–2746. [CrossRef] [PubMed]
- 38. Saranya, A.; Anandan, R. FIGS-DEAF: An novel implementation of hybrid deep learning algorithm to predict autism spectrum disorders using facial fused gait features. *Distrib. Parallel Databases* **2022**, *40*, 753–778. [CrossRef]
- Shao, L.; Fu, C.; You, Y.; Fu, D. Classification of ASD based on fMRI data with deep learning. *Cogn. Neurodyn.* 2021, 15, 961–974. [CrossRef] [PubMed]
- 40. Ahmad, I.; Rashid, J.; Faheem, M.; Akram, A.; Khan, N.A.; Amin, R. Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks. *Healthc. Technol. Lett.* **2024**, 1–13. [CrossRef]
- 41. Subah, F.Z.; Deb, K.; Dhar, P.K.; Koshiba, T. A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI. *Appl. Sci.* 2021, *11*, 3636. [CrossRef]
- 42. Tang, M.; Kumar, P.; Chen, H.; Shrivastava, A. Deep multimodal learning for the diagnosis of autism spectrum disorder. *J. Imaging* 2020, *6*, 47. [CrossRef]
- 43. Han, J.; Jiang, G.; Ouyang, G.; Li, X. A multimodal approach for identifying autism spectrum disorders in children. *IEEE Trans. Neural Syst. Rehabil. Eng.* **2022**, *30*, 2003–2011. [CrossRef]
- 44. Kong, Y.; Gao, J.; Xu, Y.; Pan, Y.; Wang, J.; Liu, J. Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. *Neurocomputing* **2019**, *324*, 63–68. [CrossRef]
- 45. Liu, J.; Sheng, Y.; Lan, W.; Guo, R.; Wang, Y.; Wang, J. Improved ASD classification using dynamic functional connectivity and multi-task feature selection. *Pattern Recognit. Lett.* **2020**, *138*, 82–87. [CrossRef]
- Arya, D.; Olij, R.; Gupta, D.K.; El Gazzar, A.; Wingen, G.; Worring, M.; Thomas, R.M. Fusing structural and functional MRIs using graph convolutional networks for autism classification. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, PMLR, Montreal, QC, Canada, 6–8 July 2020; pp. 44–61.
- Eslami, T.; Mirjalili, V.; Fong, A.; Laird, A.R.; Saeed, F. ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data. *Front. Neuroinform.* 2019, 13, 70. [CrossRef] [PubMed]
- Zhang, T.; Li, C.; Li, P.; Peng, Y.; Kang, X.; Jiang, C.; Li, F.; Zhu, X.; Yao, D.; Biswal, B.; et al. Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset. *Entropy* 2020, 22, 893. [CrossRef]
- 49. Mujeeb Rahman, K.K.; Subashini, M.M. Identification of autism in children using static facial features and deep neural networks. *Brain Sci.* **2022**, *12*, 94. [CrossRef]
- 50. Wang, M.; Zhang, D.; Huang, J.; Yap, P.T.; Shen, D.; Liu, M. Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. *IEEE Trans. Med. Imaging* **2019**, *39*, 644–655. [CrossRef]
- 51. Baygin, M.; Dogan, S.; Tuncer, T.; Barua, P.D.; Faust, O.; Arunkumar, N.; Abdulhay, E.W.; Palmer, E.E.; Acharya, U.R. Automated ASD detection using hybrid deep lightweight features extracted from EEG signals. *Comput. Biol. Med.* **2021**, *134*, 104548. [CrossRef]
- 52. Zhang, S.; Chen, D.; Tang, Y.; Zhang, L. Children ASD evaluation through joint analysis of EEG and eye-tracking recordings with graph convolution network. *Front. Hum. Neurosci.* **2021**, *15*, 651349. [CrossRef]
- 53. Wang, C.; Xiao, Z.; Wang, B.; Wu, J. Identification of autism based on SVM-RFE and stacked sparse auto-encoder. *IEEE Access* **2019**, *7*, 118030–118036. [CrossRef]
- 54. Abbas, S.Q.; Chi, L.; Chen YP, P. DeepMNF: Deep Multimodal Neuroimaging Framework for Diagnosing Autism Spectrum Disorder. *Artif. Intell. Med.* 2023, 136, 102475. [CrossRef]
- 55. Rakhimberdina, Z.; Liu, X.; Murata, T. Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. *Sensors* 2020, 20, 6001. [CrossRef] [PubMed]
- Mostafa, S.; Wu, F.X. Diagnosis of autism spectrum disorder with convolutional autoencoder and structural MRI images. In Neural Engineering Techniques for Autism Spectrum Disorder; Academic Press: Cambridge, MA, USA, 2021; pp. 23–38.
- Sherkatghanad, Z.; Akhondzadeh, M.; Salari, S.; Zomorodi-Moghadam, M.; Abdar, M.; Acharya, U.R.; Khosrowabadi, R.; Salari, V. Automated detection of autism spectrum disorder using a convolutional neural network. *Front. Neurosci.* 2020, 13, 1325. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.