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Abstract: Autism spectrum disorder (ASD) is a global concern, with a prevalence rate of approxi-
mately 1 in 36 children according to estimates from the Centers for Disease Control and Prevention
(CDC). Diagnosing ASD poses challenges due to the absence of a definitive medical test. Instead,
doctors rely on a comprehensive evaluation of a child’s developmental background and behavior
to reach a diagnosis. Although ASD can occasionally be identified in children aged 18 months or
younger, a reliable diagnosis by an experienced professional is typically made by the age of two.
Early detection of ASD is crucial for timely interventions and improved outcomes. In recent years,
the field of early diagnosis of ASD has been greatly impacted by the emergence of deep learning
models, which have brought about a revolution by greatly improving the accuracy and efficiency
of ASD detection. The objective of this review paper is to examine the recent progress in early ASD
detection through the utilization of multimodal deep learning techniques. The analysis revealed
that integrating multiple modalities, including neuroimaging, genetics, and behavioral data, is key
to achieving higher accuracy in early ASD detection. It is also evident that, while neuroimaging
data holds promise and has the potential to contribute to higher accuracy in ASD detection, it is
most effective when combined with other modalities. Deep learning models, with their ability to
analyze complex patterns and extract meaningful features from large datasets, offer great promise in
addressing the challenge of early ASD detection. Among various models used, CNN, DNN, GCN,
and hybrid models have exhibited encouraging outcomes in the early detection of ASD. The review
highlights the significance of developing accurate and easily accessible tools that utilize artificial
intelligence (AI) to aid healthcare professionals, parents, and caregivers in early ASD symptom
recognition. These tools would enable timely interventions, ensuring that necessary actions are taken
during the initial stages.

Keywords: autism spectrum disorder (ASD); neuroimaging; deep learning (DL); artificial intelligence
(AI); multimodal

1. Introduction

Autism spectrum disorder (ASD) is a developmental condition affecting 1–2% of
children worldwide, causing social interaction challenges, communication difficulties, and
repetitive behaviors. Figure 1 shows the issues faced by children with ASD. Genetics
and environmental factors significantly impact its development. Advances in diagnosis
provide hope for improved outcomes [1–4]. ASD individuals face challenges such as
social interaction difficulties, communication issues, repetitive behaviors, and sensory
sensitivities [5–8]. The assessment and diagnosis of ASD largely rely on traditional clinical
evaluations that have been utilized for several decades, as shown in Figure 2. Deep learning
techniques are increasingly used for ASD detection, and integrate data from various sources
to enhance accuracy [9]. The choice of modalities depends on available data and research
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goals [10]. Deep learning (DL) methods are increasingly used in early ASD detection and
for analyzing data from neuroimaging, behavioral observations, and speech [11]. This
enhances diagnostic accuracy and timeliness, potentially improving outcomes [12]. fMRI
and sMRI play vital roles in accurate diagnosis [13]. AI-based CAS employs both ML
and DL approaches, but DL techniques are underutilized [14–16]. Advancements in ASD
diagnostics use DL models, combining neuroimaging methods with ML and DL, to identify
early biological markers [17–19]. Lightweight CNN models show high accuracy, precision,
and F1 score. Challenges include data quality, interpretability, generalizability, and ethical
considerations [14,20].
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2. Methodology

This systematic review uses PRISMA methodology to analyze early ASD detection
advancements using multimodal DL techniques. It employs structured research methods,
including clear questions, eligibility criteria, literature search, systematic screening, and
data extraction. The review discusses implications and challenges, considering strengths
and limitations. A systematic search approach was used to evaluate each article’s suitability
to address the research questions. In this review, databases like Google Scholar, PubMed,
and IEEE were used to acquire the current study of neurodevelopmental disorders in
children using machine learning techniques. Relevant articles were shortlisted using
keywords like “Deep Learning” and “Autism Spectrum Disorder”. Figure 3 shows the
flow and the number of articles identified through different sources, which focused on
publications from 2019–2023. After thorough examination of titles, abstracts, and full
contents, 35 articles were selected for further analysis.
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3. Data Synthesis and Analysis

Several studies have delved into recent advancements in early ASD detection through
multimodal DL techniques using neuroimaging and non-neuroimaging data. Khodatars
et al. [9] explored DL and AI’s role in precise ASD diagnosis and rehabilitation, offering
insights for future research directions. de Belen et al. [21] highlighted the effectiveness of
computer vision analysis in quantifying ASD markers, benefiting diagnosis and therapy.
Feng et al. [22] assessed ML and DL methods for fMRI-based ASD classification and
recognition, discussing performance and challenges in early diagnosis. Haweel et al. [23]
investigated the potential of deep learning techniques using TfMRI for early ASD diagnosis
and the identification of autism biomarkers. Table 1 shows a summary of multimodal DL
techniques using neuroimaging and non-neuroimaging techniques in ASD detection.

Table 1. Summary of multimodal DL techniques in ASD detection as reported in previous studies.

Author Model Used Feature Used Accuracy Modality Used

Ming Li [24] CNN+RNN Open SMILE and CQT
spectrogram 88.1% Behavior signal, speech

Yang et al. [25] ASSDL Neuroimaging 98.2% fMRI

Huang et al. [26] DBN Graph-based feature
selection (GBFS) 76.4% fMRI from ABIDE

Pan et al. [27] GCN Brain imaging 87.62% fMRI from ABIDE I

Niu et al. [28] DANN Multi scale brain functional
connectom 73.2% rs-fMRI and PC data from

ABIDE

Ahmed et al. [29]
Mobile Net

Xception
InceptionV3

Facial features
95%
94%
89%

Facial images

Saputra et al. [30] CNN

rs-fMRI and task-fMRI
BOLD signals, and
aberrations in brain

disorders

89.58%

Brain MRI, clinical and
behavioural markers,

electroencephalography
indices

Liao et al. [31] CNN Features fusion 87.50% Eye fixation, facial
expression, and EEG

Sharif, and Khan, [32] CNN Corpuscallosum 55.93% Neuroimaging data, EEG,
speech, Kinesthetic

Epalle et al. [33] MISO-DNN Features fusion 79.13% MRI
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Table 1. Cont.

Author Model Used Feature Used Accuracy Modality Used

Ke et al. [34] 2D/3D CNN

Spatial transformer
network (STN) and

classification activation
mapping (CAM)

89% MRI

Almuqhim and
Saeed, [35] ASD-SAENet Sparse autoencoder (SAE) 70.8% fMRI

Lee et al. [36] BLSTM eGeMAPS speech feature 68.18%
ADOS-2, ADI-R, BeDevel-I,
BeDevel-P, K-CARS, SCQ,

and SRS

Rahman and
Subashini [37] DNN Feature fusion 97.18% QCHAT and QCHAT-10

Saranya and
Anandan, [38] DEAF Multimodal features 96.5 Facial fusion emotions and

human gait sequences

Shao et al. [39] GCN Deep features 79.5% fMRI from ABIDE

Israr Ahmad [40] ResNet50 Facial Features 92% Facial Images

Subah et al. [41] DNN Brain atlases 88% rs-fMRI

Tang et al. [42] Deep multimodal
model

fMRI scan and ROI signal
intensities 74% fMRI

Han et al. [43] MMSDAE Feature fusion 95.56% EEG and ET

Kong et al. [44] DNN
Individual brain network
with connectivity features

between pairs of ROIs
90.39% MRI from ABIDE I

Liu et al., 2020 [45] DFC MTFS 76.8% fMRI from ABIDE I

Arya et al. [46] 3D CNN-GCN model Feature fusion 64.23% rs-fMRI

Eslami et al. [47] ASD-DiagNet
Correlated and

anticorrelated connections
of the brain

70.3% fMRI from ABIDE-I

Zhang et al. [48] SC-CNN Temporal feature 68.6% Re-fMRI

Rahman and
Subashini, [49]

MobileNet
Xception

EfficientNet B0
EfficientNet B1
EfficientNet B2

Static facial features

92.81%,
96.63%,
93.38%,
95.06%,
94.31%

Face photos

Wang et al. [50] maLRR AAL 74.62% fMRI

Baygin et al. [51]

Hybrid Lightweight
Deep Feature
Generation

(MobileNetV2,
ShuffleNet,

SqueezeNet)

Deep feature 96.44% EEG

Zhang et al. [52] GCN Deepfusion 95% EEG

Wang et al. [53] DL with SVM-RFE Feature self-taught
learning network 93.59% rs-fMRI

Haweel et al. [23] CNN Speech task facial features 80% sMRI, TfMRI and rs-fMRI

Abbas et al. [54] DeepMNF Spatio temporal features 75% rs-fMRI and sMRI

Rakhimberdina Z, Liu,
and Murata [55]

Graph-based
multi-model ensemble

RSFC and
phenotypic features 73.13% fMRI from ABIDE
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Table 1. Cont.

Author Model Used Feature Used Accuracy Modality Used

Mostafa and Wu [56] CAE Lines, shapes, specific
objects 96.2% T1-weighted MRI, rs-fMRI

Sherkatghanad
et al. [57] CNN Connectomes 70.22% rs-fMRI from ABIDE

4. Modalities Used in ASD Detection

In the detection of autism spectrum disorder (ASD), a combination of neuroimaging
and non-neuroimaging techniques is employed to assess various aspects of an individual’s
behavior, cognition and neurological function. Table 2 gives an overview of both types of
modalities used to detect autism spectrum disorder at an early stage.

Table 2. Various deep learning ASD detection modalities using neuroimaging and non-neuroimaging
techniques and their description.

Neuroimaging

Functional Magnetic Resonance Imaging (fMRI)
• FMRI measures brain blood flow, revealing activity and connectivity.
• FMRI aids in ASD detection using DL to analyze activation patterns

and neural circuits.

Electroencephalography (EEG)
• EEG captures brain signals.
• Enabling deep learning models to identify ASD-related patterns in

brain activity through electrodes.

Electromyography (EMG)
• EMG measures muscle electrical activity, revealing motor function and

ASD impairments.
• Used in deep learning techniques to detect motor abnormalities early.

Non-Neuroimaging

Eye-Tracking (ET)
• Eye-tracking technology monitors eye movements and gaze patterns
• Enabling deep learning models to identify ASD-related gaze behaviors,

aiding social communication assessment.

Speech and Language Analysis
• Identifying distinctive speech characteristics.
• Deep learning models analyze speech data to extract acoustic, prosodic,

and linguistic features for diagnosing ASD,

Behavioral Data
• It observes and assesses an individual’s behavior.
• Deep learning models identify ASD traits and patterns, improving

accuracy and reliability through integration with other modalities.

Genetic Data
• Genetic data in ASD detection enhances research, enhancing diagnosis

and treatment strategies.
• DL integration with neuroimaging and behavioral data.

5. Deep Learning Models

Various neural network models are pivotal in improving ASD detection. CNNs excel at
tasks like facial analysis, eye-tracking, and speech analysis, enhancing diagnostic accuracy
and enabling personalized interventions [30–32]. DNNs are proficient at extracting com-
plex patterns, aiding early detection, diagnosis, and personalized interventions [37,41,44].
RNNs are instrumental when analyzing sequential data and speech transcripts, supporting
early screening and personalized interventions [24]. GCNs contribute by capturing rela-
tionships in neuroimaging and social interaction graphs, improving diagnostic accuracy
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and advancing ASD research [27,39,52]. These neural network models collectively enhance
ASD detection across diverse data modalities.

6. Performance Analysis

The analysis shown in Table 1 presents the accuracy results from various ASD classifi-
cation models, demonstrating advancements in deep learning for ASD detection. High-
performing models include ASDL (98.2%), EfficientNetB1 (95.06%), CNN (94%), and
MobileNet (95%). Competitively performing models include CNN (87.50%) and GCN
(79.5%), while BLSTM (68.18%) and Graph-based multi-model ensemble (73.13%) achieve
lower accuracies. This underscores the importance of choosing appropriate deep learn-
ing architectures for accurate ASD classification, offering insights for future research and
clinical applications.

7. Research Gaps and Future Directions

The literature review identified several limitations in ASD detection, including limited
multimodal data-based studies, lack of longitudinal studies, lack of explainability and in-
terpretability, limited data size, and overall limitations. These issues require future research
to address neuroimaging, genetic information, and behavioral assessments for improved
accuracy and reliability. Addressing these issues is crucial for enhancing effectiveness and
reliability in diverse datasets and populations.

Multimodal data integration in ASD detection faces challenges in feature integration,
interpretability, and data consistency. Robust fusion techniques are needed for resource-
intensive data collection. Collaboration with clinicians is crucial for practical effectiveness.
Online learning and adaptive models are essential. Longitudinal analysis is crucial for
personalized treatment plans. Innovations in DL models improve prediction accuracy and
treatment strategies.

8. Conclusions

This review highlights recent advancements in early ASD detection using multimodal
deep learning techniques, enhancing accuracy and objectivity. These techniques integrate
behavioral, genetic, and neuroimaging data, enabling personalized interventions and stan-
dardized assessment processes. However, further research is needed to address challenges
like improved detection accuracy, data availability and interpretability. Multimodal deep
learning techniques for early ASD detection offer significant scientific implications, improv-
ing accuracy and reducing diagnostic inconsistencies. By integrating behavioral, genetic,
and neuroimaging data, these techniques enable standardized assessments, personalized
interventions, and large-scale screening. However, further research and validation are
needed before widespread implementation in clinical settings.
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Abbreviations

ASSDL Attention based semi-supervised dictionary learning
DBN Deep belief network
GCN Graph convolutional networks
ROI Regions of interest
AAL Anatomical automatic labeling
rs-fMRI Resting-state fMRI
PC Personal characteristic
MISO-DNN Multi-input single-output deep neural network
ADOS-2 Autism diagnostic observation schedule, second edition
BLSTM Bidirectional long short-term memory
ADI-R Autism diagnostic interview, revised
BeDevel-I Behavior development screening for toddlers interview
BeDevel-P Behavior development screening for toddlers play
K-CARS Korean version of the childhood autism rating scale
SCQ Social communication questionnaire
SRS Social responsiveness scale
QCHAT Quantitative checklist for autism in toddlers
DANN Multichannel deep attention neural network
DNN Deep neural network
DEAF Deep extreme adaptive fuzzy
RAPID Real-time analysis of precursors for intervention and detection
MTFS Multi-task feature selection
eGeMAPS Geneva minimalistic acoustic parameter set
MMSDAE Multimodal stacked denoising autoencoder
DFC Dynamic functional connectivity
SC-CNN Separated channel convolutional neural network
CAE Convolutional autoencoder
RSFC Resting-state functional connectivity
DeepMNF Deep multimodal neuroimaging framework
maLRR multi-site adaption framework via low-rank representation
AAL Anatomical automatic labeling
PRISMA Preferred reporting items for systematic reviews and meta-analyses
ABIDE Autism brain imaging data exchange
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