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Abstract

:

The growing demands of next-generation electric and hybrid electric vehicles and high-power electronic devices necessitate higher power density, longer cycle life, and enhanced safety at a reduced cost. To address these challenges, supercapacitors have emerged as a potential technology offering several advantages such as higher power density, excellent cycle stability, environmental friendliness, and wide temperature-range performance. Recently, research has focused on developing nanomaterials that would improve the capacitive performance of supercapacitors. Graphitic carbon nitride (g-CN or g-C3N4) exhibits distinct chemical and physical characteristics that are advantageous for diverse applications including energy conversion and storage. g-CN integrates the benefits of nitrogen doping, such as increased surface polarity and better surface wettability, with the advantages of carbon compounds, such as ease of availability, abundance in nature, and cost efficiency. The considerable advance in research on g-CN has inspired the development of various g-CN nanocomposites to achieve high efficiency by eliminating certain limitations. To overcome the issues related to conductivity and specific surface area, g-CN can be composited with conducting polymers (CP) as one of the modification strategies. Recently researchers have experimented with various g-CN-conducting polymer nanocomposites as electrode materials for supercapacitors. Based on the studies conducted, g-CN-conducting polymer nanocomposites have achieved good stability, adequate conductivity, and better specific capacitance. This review provides an overview of g-CN/conducting polymer nanocomposites as supercapacitor electrode materials. It covers synthetic strategies, discusses factors affecting their electrochemical performance, and outlines future research directions for high-performance supercapacitors.
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1. Introduction


The futuristic demands of electric vehicles, hybrid electric vehicles [1], and high-power electronic devices necessitate higher power density, longer cycle life, and enhanced safety at a reduced cost [2]. To address these challenges, supercapacitors have emerged as a potential technology. Electrochemical capacitors, alternatively referred to as supercapacitors (SCs) or ultracapacitors, have attained prominence for their distinct attributes [3]. They exhibit greater power density in comparison to traditional batteries and can hold ten to one-hundred times more energy, which can be rapidly released over a short period compared to standard capacitors. Another noteworthy characteristic is their capacity to undergo thousands of consecutive charge–discharge cycles, setting them apart from other storage devices like batteries and regular capacitors [4]. In the current scenario, supercapacitors find wide application in situations where rapid charge and discharge capabilities are crucial like regenerative braking systems in hybrid electric vehicles (HEVs), efficiently capturing and reusing energy while minimizing maintenance [1]. Supercapacitors complement batteries, especially during high-power demand, and their compact, lightweight design suits portable and wearable electronics. Their stable performance in varying temperatures makes them invaluable in challenging environments aligning with sustainability due to their eco-friendliness [5]. SCs can be broadly categorized into two types based on their energy storage mechanisms: electric double-layer capacitors (EDLCs) and pseudo-capacitors [6]. EDLCs operate by storing energy through ion absorption and desorption at the electrode–electrolyte interface, and the pseudo-capacitors store energy by reversible surface oxidation–reduction reactions. The SC device comprises a pair of electrodes (cathode and anode), along with current collectors, a separator, and an electrolyte [7]. The electrochemical efficiency of the supercapacitor for energy storage is significantly influenced by the choice of electrode material. EDLCs use carbon as the electrode material, whereas pseudo-capacitors use transition metal oxides or conducting polymers as the electrode material [8]. Hybrid nanocomposites for supercapacitor electrodes range from the most familiar ones like carbon-based nanomaterials, transition metal oxides/hydroxides, and conducting polymers (CPs), to additional novel nanomaterials such as covalent organic frameworks [9], metal-organic frameworks [9], MXenes [10], metal nitrides, polyoxometalates [11], black phosphorus, and graphitic carbon nitride [12].



Graphitic carbon nitride (g-C3N4) is a novel polymeric material composed of tris-triazine-based motifs consisting of carbon (C) and nitrogen (N) in the ratio of 3:4 and a small amount of hydrogen (H). Due to its stacked structure, g-CN is commonly considered sp2-hybridized nitrogen-substituted graphene [13]. The two-dimensional (2D) layered structure of g-CN facilitates significant advantages when combined with other components, enabling effective hybridization [14]. The properties of graphitic carbon nitride and its corresponding applications are listed below in Table 1. Its wide band gap of 2.5 eV–2.8 eV allows for efficient charge separation and transport, which is beneficial for energy storage applications [15]. Its tunable electronic structure, chemical composition, and high thermal and chemical stability enable modifications to enhance specific properties for energy storage needs. Furthermore, g-CN is abundant, low-cost, and environmentally friendly, which contributes to its potential as a sustainable material for energy storage devices [16].



The g-CN primarily finds applications in areas such as photocatalysis, water splitting, hydrogen production [17], sensing [18], and solar cells [19]. In addition, g-CN has emerged as a potential electrode material for supercapacitors due to its high nitrogen content and an ample number of reactive sites that promote nucleation. The chemical stability of g-CN makes it an effective material for electrochemical applications, showing resistance to dissolution in both acidic and alkaline solutions as well as other organic solvents [20]. However, the high contact resistance, limited surface area, and significant recombination rate pose substantial conductivity challenges for supercapacitor storage in g-CN. Nevertheless, the supercapacitance performance of g-CN can be significantly improved through approaches like elemental doping and interface engineering [21]. Heteroatoms such as O, N, B, S, and P, through surface Faradaic reactions, modify the acceptor–donor characteristics, resulting in an enhanced capacitance within the system. Nitrogen is a commonly incorporated heteroatom into graphitic networks for supercapacitor applications. The introduction of nitrogen into g-CN improves the wettability and electrical conductivity, thereby improving the capacitive performance. Nitrogen doping increases the number of active surface sites and, being a neighboring element to carbon, also contributes an additional electron, which imparts stability to the material [22]. Furthermore, the interface engineering between conducting polymers and g-CN increases the material’s surface area and the number of active sites and facilitates the easier diffusion of ions during the electrode–electrolyte interaction, thereby promoting faradaic reactions [23].



Conducting polymers (CPs) are made of organic macromolecules that exhibit electrical conductivity due to the presence of π-conjugated systems within their molecular structures. Unlike traditional insulating polymers, conducting polymers are capable of transporting charge carriers, such as electrons and ions, resulting in electrical conductivity [24]. One of the defining features of conducting polymers is their remarkable redox behavior, which allows them to undergo reversible redox reactions upon the uptake and release of charge carriers, making them potential candidates for batteries and supercapacitors, among other energy storage devices [25]. As electrodes in supercapacitors, they can offer high power densities, fast charging capabilities, and excellent cycling stability [26]. Conducting polymers also find applications in flexible electronics, energy conversion, metal-air batteries, fuel cells, electrocatalysis, and photovoltaics [27]. Their unique electrochemical properties, coupled with tunable chemical structures and flexibility, make them highly attractive for a wide range of energy applications. However, they exhibit low power performance and a short cycle life when used as a sole component for supercapacitor electrodes. To overcome this limitation and enhance electrode performance, researchers have explored compositing CPs with various carbon materials [25,28].





 





Table 1. Properties of graphitic carbon nitride and corresponding applications.
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	Property
	Description
	Applications
	Ref.





	Optical Band Gap
	~2.6 eV
	Photocatalysis, Solar cells, Photovoltaics
	[13,29]



	Chemical Stability
	Stable under various conditions
	Catalyst, Gas separation membranes
	[30]



	Specific Surface Area
	High specific surface area (porous structure)
	Energy storage devices (Batteries and SCs)
	[31]



	Thermal Stability
	Stable up to ~550 °C
	Catalysis under high-temperature conditions
	[32]



	Electrical Conductivity
	Low electrical conductivity
	Photodetectors, Light-emitting devices
	[33]



	Photocatalytic Activity
	Efficient under visible light irradiation
	Hydrogen Evolution and Water-Splitting
	[34,35]



	Chemical Inertness
	Chemically inert under certain conditions
	Corrosion-resistant coatings, Chemical sensors
	[36]



	Water Absorption Capacity
	Hydrophilic nature
	Water purification, Humidity sensors
	[37,38]



	Biocompatibility
	Non-toxic and biocompatible
	Biomedical, Environmental remediation
	[39]








Numerous research studies have reported the synthesis of various g-CN-based composites for energy applications, which can be classified as follows: metal-free composites using g-CN; composites combining g-CN with metal sulfides/oxides [40]; g-CN combined with BiO-X (Ag-X), where X represents halides such as Cl, Br, I; composites of g-CN with noble metals; and complex systems based on g-CN. Among these categories, g-CN-based metal-free composites have had great significance to researchers recently due to their cost-effectiveness and environmentally friendly nature. Some highlighted composites of g-CN with other materials are graphene/g-CN [41], reduced graphene oxide (r-GO)/g-CN [42], carbon nanotubes (CNTs)/g-CN [43], polyaniline (PANI)/g-CN, C60/g-CN, and phosphorene/g-CN. This review focuses on the current state of g-CN/conducting polymer nanocomposites as supercapacitor electrodes. We discuss various properties and factors influencing the electrochemical performance of g-CN and the fabrication strategies for nanocomposites. Furthermore, potential future directions for g-CN/conducting polymer nanocomposites for high-performance supercapacitors are also proposed.




2. Synthetic Methods of g-CN/CP Nanocomposites


g-CN/conducting polymer nanocomposites can be fabricated using various methods, such as direct solution mixing, layer-by-layer assembly, chemical oxidative polymerization, electrochemical polymerization, and hydrothermal methods. These approaches can be broadly classified into two categories: the physical route and the chemical route [44]. In the physical route, conducting polymers can be initially synthesized with distinct morphologies, and subsequently, physical interactions and assembly techniques can be employed to assemble g-CN/conducting polymer nanocomposites [45]. On the other hand, the chemical route involves preparing g-CN/conducting polymer nanocomposites through chemical or electrochemical oxidative processes, which entail the in situ polymerization of conducting polymers on g-CN substrates [46]. Some of the widely used methods are as follows:



Simple direct mixing is a stirred mixing of nanomaterials and polymers with or without the use of additives and crosslinking agents. The reinforcement of g-CN to a conducting polymer has resulted from the intermolecular forces of conducting polymer chains [47]. Ionic interaction is a type of physical crosslinking caused by the interactive forces between positive and negative charges present on the polymer backbone. The ionization process can be achieved by using certain external agents like salts that introduce metallic cations and anions into the system at ambient temperature [48]. In situ polymerization is another synthetic strategy that involves the synthesis of polymers directly on the electrode substrate, rather than producing them separately and then incorporating them later. The monomers along with the initiator or catalyst are introduced onto the substrate for direct polymerization [48]. The chemical oxidative polymerization process is used to polymerize compounds belonging to aromatic functional groups such as aniline, pyrrole, phenols, and thiophene. In this process, the monomer is combined with an organic or inorganic oxidizing agent, leading to the formation of cation or cation radical sites, which then initiate the growth of the polymer [49]. In electrochemical deposition, the monomer undergoes oxidation when an electrical current is applied, leading to the deposition of a thin layer of the resulting polymer onto the surface of a conductive electrode. As a result, electrochemical polymerization is restricted to conductive substrates like metals, conductive oxides, and carbon [50]. The Sono chemical method employs high-frequency ultrasound radiation (20 kHz–10 MHz) to induce chemical reactions in molecules. Using this technique, the nanocomposite of g-C3N4/PPy was synthesized. Initially, g-CN was dispersed in water, and a specific amount of PPy was suspended in the solution. The mixture was then subjected to sonication for one hour. After the treatment, the resulting material was thoroughly washed and subsequently dried in an oven [51]. The hydrothermal synthesis of the nanocomposite NiO/g-C3N4/PANI involved heating a solution mixture of NiO, g-C3N4, and aniline in a 1:1:1 ratio under high pressure and temperature. During this process, the aniline underwent chemical oxidation to form PANI simultaneously resulting in the formation of NiO/g-C3N4/PANI [52]. The reflux method involves heating a reaction mixture to its boiling point and then cooling it back to its liquid phase under controlled conditions. This process allows for the efficient and controlled formation of nanocomposites by promoting the reaction between precursor materials and ensuring the uniform dispersion of nanoparticles or nanofillers within the matrix. The nanocomposite as obtained is then filtered and washed with a suitable solvent to remove any impurities or unreacted precursors [53].




3. g-CN/Conducting Polymer Electrodes


Several approaches have been proposed to address the constraints of bare g-CN. These approaches include controlling the morphology through a choice of precursor and synthesis conditions, doping with different atoms [54], combining it with other carbon materials, or conducting polymers. The subsequent section focused on g-CN/conducting polymer hybrids for improving energy storage in supercapacitors. Conducting polymers like PEDOT:PSS, polyaniline (PANI), polypyrrole (PPy), and polyindole (PIn) have been reported for supercapacitor application. The comparative performance of various g-CN/conducting polymer electrodes for supercapacitors is depicted in Table 2. PEDOT was the first among the conducting polymers to combine with g-CN in 2015 [55], Chen et al. synthesized a PEDOT/g-CN composite on a glassy carbon electrode using a simple direct mixing technique. The PEDOT/g-CN composite demonstrated an estimated capacitance of 53.89 Fg−1 in 1M H2SO4 and 31.39 Fg−1 in 1M Na2SO4 electrolytes when scanned at a rate of 1 mV/s. In 2018, Zhou et al. synthesized an electrode by compositing g-CN with PANI (PANI/g-C3N4) using an in situ oxidative polymerization method. The obtained PANI/g-CN composite exhibited a flower-like morphology and exhibited an impressive capacitance of 584.3 Fg−1 at 1 Ag−1 in 1 M H2SO4 [56].



The introduction of conducting polymer imparts the redox reaction and improves the capacitance of the electrode. For instance, Dong et al. successfully synthesized a sandwiched nanocomposite consisting of g-C3N4/PPy, which displayed enhanced performance characteristics. The results showed significant improvements in various aspects, such as conductivity, cyclic stability over 1000 cycles at a current density of 20 Ag−1, specific capacitance of 471 Fg−1 at a current density of 1 Ag−1, and a remarkable retention capability above 70% after 5000 cycles at 1 Ag−1, when compared to individual g-CN nanosheets and conductive PPy [57]. Verma et al. attempted interfacial interaction engineering of a g–C3N4–PIn nanohybrid via in situ chemical polymerization. This electrode, free from both metals and binders, demonstrated rapid charge diffusion. The bare g-C3N4 exhibited a lamellar flake-like structure with multilayer aggregation (Figure 1a). The g–C3N4–PIn nanohybrid displays a network-like structure and a smooth surface due to a strong interaction between g-C3N4 and PIn (Figure 1b). This interaction, driven by π-π interactions, eliminated agglomerations seen in their pristine form, leading to improved electrochemical performance. The 1:2 g–C3N4–PIn nanohybrid electrode exhibited distinct redox peaks at 0.5 V, indicating pseudocapacitance from polaronic transitions in PIn (Figure 1c). Additionally, kinetic response studies (Figure 1d) and cyclic stability tests showed that the g-C3N4-PIn nanohybrid with a weight ratio of 1:2 displayed an optimal performance, exhibiting a specific capacitance of 115.8 Fg−1 and maintaining 96% cycling stability over 250 cycles than that of bare g-CN and pure polyindole (Figure 1e) [49]. In another related work, PIn/g-CN composites were synthesized through the reflux method; the as-prepared composite displayed improved ionic diffusion, balanced porosity, and high power density and energy density. Specifically, the PIn/g-CN composite electrode exhibited a specific capacitance of 440.8 C/g when subjected to a current density of 6 A/g in a 1 mol/L aqueous H2SO4 electrolyte [58].



A few researchers progressed with ternary composites also, two such composites are cellulose/polypyrrole/tubular g-CN and polypyrrole/g-C3N4@graphene (PPy/g-C3N4@G). The nano fibrillated cellulose/polypyrrole/g-CN composite demonstrated a specific capacitance of 2.53 F/cm2, while the PPy/g-C3N4@GN ternary composite exhibited a higher specific capacitance of 260.4 F/g at a current density of 1 A/g and 5 mA/cm2 [59]. Whereas the asymmetric device consisting of PIn/g-C3N4//rGO exhibited a specific capacitance of 73.84 C/g at a current density of 3 A/g, while maintaining a moderate cyclic retention of 72% after undergoing 5000 cycles at 18 A/g. Additionally, this device demonstrated a power density of 2307 W/Kg and an energy density of 23.2 Wh/Kg at 3 A/g [58]. The combination of g-C3N4/conducting polymer electrodes is in its early stages, showing promising stability but currently lacking in specific capacitance. The availability of highly conductive conducting polymers is constrained. Further research is needed to optimize the nanocomposite for high performance in supercapacitors.





 





Table 2. Comparative performance of g-CN/conducting polymer electrodes for supercapacitors.
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	Electrode
	Fabrication Method
	Electrolyte
	Specific Capacitance (F/g)
	Retention Rate (Cycles)
	Ref.





	NiO/g-C3N4/PANI/Ni-MOF
	Reflux method
	1 M H2SO4
	2420
	99.5%, 3000
	[52]



	Ag/PANI/g-C3N4
	In situ oxidative polymerization
	1 M H2SO4
	797.8
	84.43%, 1000
	[60]



	Ag/g-C3N4@ppy
	In situ polymerization
	1 M H2SO4
	602.2
	95.23%, 10,000
	[61]



	PANI/g-C3N4/MXene
	In situ chemical polymerization and a vacuum-assisted filtration
	1 M H2SO4
	570
	91.1%, 1000
	[62]



	C3N4/PPy/MnO2
	In situ chemical procedure
	1 M Na2SO4
	509.4
	95.7%, 5000
	[63]



	g-C3N4/PPy
	Chemical oxidation method
	6 M KOH
	471
	71%, 5000
	[64]



	PIn/g-C3N4
	Reflux method
	1 M H2SO4
	440.8
	72%, 5000
	[58]



	MnO2@PANI-G-C3N4
	Electrochemical deposition
	0.5 M H2SO4
	318
	80.62%, 1000
	[65]



	TG-CN /PANI
	In situ polymerization
	0.5 M H2SO4
	298.31
	5000
	[66]



	PEDOT: PSS@g-C3N4
	The simple direct mixing process
	1 M H2SO4
	277
	5000
	[47]



	g-C3N4/PANI
	In situ polymerization
	3 M KOH
	234
	86.2%, 10,000
	[67]









4. Conclusions and Future Perspectives


This review highlighted the promising use of g-CN nanocomposites, incorporating CPs, as effective metal-free electrode materials for supercapacitors. The synergetic effects between g-CN and different conducting polymers have exhibited remarkable improvements in the performance of supercapacitors, enhancing their energy density, capacitance, and cycling stability. The incorporation of graphitic carbon nitride as a nanofiller in conducting polymer matrices has improved electron transport, ion diffusion, and specific surface area, thereby promoting higher charge storage and faster charge/discharge rates. The nanocomposite design and properties were tuned by adjusting the ratio and structure of graphitic carbon nitride and conducting polymer components. The utilization of conducting polymers and graphitic carbon nitride is also environmentally sustainable as these materials can be derived from renewable resources and can contribute to reducing the dependence on environmentally harmful and non-abundant metal-based energy storage solutions.



Despite the considerable progress made in graphitic carbon nitride and conducting polymer nanocomposite research for supercapacitor applications, further advancements in synthesis methods should be explored to improve the controllability, scalability, and cost-effectiveness of these nanocomposites. Research should focus on designing 3D hierarchical electrode structures and exploring advanced binder systems that can lead to higher capacitance and improved cycling stability. Most of the work used aqueous electrolytes, and investigation into new electrolyte systems, including ionic liquids and solid-state electrolytes, can further improve the safety of the supercapacitors. Future research endeavors focusing on these investigations will undoubtedly accelerate the advancement of these materials toward efficient and sustainable energy storage solutions of the future.
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