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Abstract: Early detection of cancer is important for successful treatment and improved survival of
many cancer types. Technological advances have enabled researchers to develop more precise and
reliable methods of cancer detection that go beyond traditional methods, such as biopsy and imaging.
Through methods such as blood tests, MRI scans, and gene expression profiling, it is now possible to
quickly and accurately diagnose many types of cancer. Early detection of cancer can lead to improved
outcomes for patients and can even help save lives. Time series analysis is a data mining technique
used to identify and analyze the temporal patterns in datasets. The proposed model reached 91.30%
accuracy, 90.11% precision, 92.46% recall, and a 90.12% F1-score. This enhanced version of time series
analysis incorporates multiple layers of data sources and uses advanced machine learning algorithms
to identify patterns that could signal the presence of a tumor. Innovations in time series analysis
for cancer detection can have a significant impact on modern healthcare. Time series analysis is a
mathematical method used to analyze trends in data over multiple periods. It can be used to identify
patterns that may indicate early signs of cancer.

Keywords: time series analysis; data mining; cancer detection; tumor; machine learning

1. Introduction

Cancer is one of the world’s most prevalent and deadly diseases, and detection is
essential for successful treatment [1]. Insights into structural, molecular, and clinical
characteristics play an important role in improving early detection and treatment [2]. In
addition, DL, a form of ML, can be deployed to identify complex patterns within medical
images [3]. It can then be used to improve the accuracy of predictions made about the
presence of cancer [4]. Using sequencing techniques, scientists can identify and sequence
the genes within cancer cells [5]. These studies aim to analyze the genetic makeup of large
populations to search for genetic variations associated with wither [6]. Another valuable
technology is that of high-throughput single-cell genomic analysis [7]. The development of
these computational technologies has drastically improved the accuracy of cancer detection,
and has even allowed for the targeted treatment of certain conditions [8]. Cancer detection
has become a priority in modern healthcare, with good reason. Every year, millions
worldwide are diagnosed with cancer, and many lose their battle. It is why we must detect
and diagnose cancer as early as possible [9]. Early-stage treatment is often much less
expensive than treatment for advanced cancer [10]. Early cancer detection gives cancer
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patients more treatment options, which are usually much broader and more advanced.
Radiation, chemotherapy, surgery, and even immunotherapy are all potential options, for
which a patient may not be eligible if their cancer is already in the advanced stages [11].
The key to beating cancer is to catch and diagnose it as early as possible. It involves regular
visits to the doctor, undergoing appropriate screenings, and striving to lead a healthy
lifestyle. This approach aims to leverage specific genetic characteristics of individuals to
provide personalized treatment plans [12]. Doctors can tailor more effective treatments by
studying the unique DNA makeup of a patient’s tumor. AI algorithms can sift through
large amounts of medical data in order to identify patterns, as well as generate predictions
about the development of cancer [13]. The key contributions of the research include the
following:

• Automated detection of early-onset cancer is possible by observing current and past
cancer patterns, obtaining maximum accuracy in classifying tumor subtypes through
time series analysis.

• Improved understanding of the complex progression patterns of tumors by combining
clinical and molecular data, predicting diagnosis and survival rates based on temporal
changes in tumor sizes.

• Improved accuracy of imaging modalities for diagnosis by including temporal infor-
mation and intelligently identifying new patterns in tumor characteristics that could
indicate prognosis or treatment outcomes.

The rest of the paper is organized as follows: Section 2 describes associated works
and explains the proposed model, Section 3 describes the outcomes and discussions, and
Section 4 indicates the notion and destiny scope of the proposed studies.

2. Materials and Methods

King, A., et al. [14] mentioned that early cancer detection is critical in improving patient
consequences and decreasing mortality. MR imaging is an effective tool for early cancer
detection, allowing for correct evaluations of tumor length, form, and unfold, in addition
to the presence and volume of lymph node involvement. Crosby et al. [15] mentioned
that early detection of cancer involves figuring out cancers in their earliest levels before
they have a chance to unfold throughout the body. Van Der Pol et al. [16] mentioned that
the early detection of maximum cancers via decoding the epigenetic and environmental
fingerprints of mobile-unfastened DNA is a superior technique. Scientists use this method
to detect cancers in their earliest stages by studying DNA fragments released with the
resource of cells into the bloodstream. Roy et al. [17] discussed the ongoing study and
evaluation of DNA methylation classifiers’ diagnostic energy for early cancer detection.
Cutting-edge research looks at the capacity of these DNA methylation classifiers to become
aware of early levels of diverse cancers. Chen et al. [18] stated that the non-invasive early
detection of cancers four years before conventional prognosis, using a blood test, is a
breakthrough in the fight in opposition to cancer. This test is primarily based on detecting
ctDNA, genetic cloth released into the blood by tumor cells. Islam et al. [19] has mentioned
the eye mechanism is used to capture patterns among incremental layers. Jeyaraj et al. [20]
mentioned that the laptop-assisted clinical photograph for the early analysis of oral cancer is
conducted through the usage of deep studying rules trained on medical photograph-graph
statistics for the automatic classification of medical images associated with oral cancer.

Yao et al. [21] described a technique utilizing an attention-based time-incremental CNN
to detect multi-magnificence arrhythmias from 12-lead various-duration ECG. Ginsburg
et al. [22] discussed the importance of early detection of breast cancer, the main reason of
death among women, including crucial tests such as mammography and clinical breast
exams. Liu et al. [23] has mentioned that low-fee thermophoretic profiling is a technique for
detecting and classifying cancers by analyzing Extracellular-Vesicle (EV) surface proteins.
This approach utilizes thermophoresis, a phenomenon in which particles at a specific
temperature move in response to heat distinction. Particles circulate closer to hotter or
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cooler temperatures, relying on the heat difference. Cai et al. [24] discussed genome-wide
mapping of 5-hmC in cfDNA as a non-invasive approach for the early detection of HCC.

2.1. Proposed Model

The Enhanced Time Series Analysis for Cancer Detection (ETSC) is a method that uses
an ensemble of statistical, temporal, and machine learning methods to identify and classify
cancer progression and chromosome aberration patterns across multiple cancer types, as
shown in Figure 1.
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Machine learning is an important component in the enhanced time series analysis for
cancer detection.

2.2. Dataset Description

The details of the dataset are provided at https://www.kaggle.com/code/adithyajere/
cancer-dataset (accessed on 10 May 2023). Table 1 contains details about the dataset.

Table 1. Dataset description.

Dataset Description

Lung Tumor

No.of Samples: 6125
Training Samples: 75% (4778 Samples)
Testing Samples: 25% (1347 Samples)

Liver Tumor

Breast Tumor

Leukemia Tumor

Brain Tumor

Skin Tumor

It can be used to develop an enhanced time series analysis model to improve the
accuracy of detection and reduce false positives and negatives. This can ultimately improve
the accuracy of cancer detection and treatment. Improved bioavailability in the context
of cancer detection is significant because it allows physicians to more accurately detect
and diagnose cancer. This accuracy is critical for determining the most effective treatment
options for patients. By using a time series-based model, improved bioavailability can
be achieved by taking into account changes in laboratory data, such as hormone levels,
blood counts, and imaging scans, over time. Such models allow physicians to more
accurately detect microscopic changes in tumor features, providing a more precise diagnosis
and treatment for cancers. Improved bioavailability also helps to resolve the number of
FPs and FNs, ensuring the accurate detection of cancer in a timely fashion, improving
patient outcomes.

https://www.kaggle.com/code/adithyajere/cancer-dataset
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2.3. Pre-Processing

Pre-processing is the process of preparing a time series dataset for further analysis.
It involves the detection of seasonal patterns, noise removal, outlier removal, increased
accuracy, data smoothing, and feature vector creation for modeling. By performing pre-
processing, data scientists can gain valuable insights from the time series and improve
the accuracy of cancer detection models. The time series-based detection model can be
applied to a variety of cancers, including breast, prostate, pancreatic, ovarian, cervical,
colorectal, and lung cancer. The model is designed to detect changes indicative of cancer
progression, such as increases or decreases in tumor size, metabolic activity, tissue stiffness,
or tissue composition. The model can be used to detect changes in cancer at its earliest
stages, providing an opportunity to intervene in the progression of the disease before it
becomes more severe. In addition, the model can be used to monitor cancer progression in
response to treatments, enabling physicians to adjust treatments as needed. This approach
has potential applications across different cancer types, helping physicians identify and
monitor cancer progression in individual patients.

2.4. Feature Extraction

This step extracts important features from the data, which can be used to differentiate
between normal and abnormal cell activities. These features are then used to identify any
anomalies that might suggest the presence of cancer. The extracted features can also be
used to quantify the accuracy of the predictive model and build a better predictive model
with improved accuracy.

2.5. Segmentation

The segmentation process in enhanced time series analysis for cancer detection serves
the purpose of organizing large datasets into bite sizes for faster processing. Segmentation
divides datasets into smaller chunks, aiding in better understanding and analysis. Each
segment is specifically designed to extract meaningful information from the data, which
can be used to detect cancer.

2.6. Classification

Classification combines several existing tools and techniques to achieve a high degree
of accuracy. The process involves applying selected features to develop a predictive model
that is able to accurately distinguish cancer from non-cancer samples. The performance
of the model can be validated by comparing results to experimental data from SCC 29
colon cancer cell lines. This can be done by evaluating the model’s accuracy in predicting
cellular proliferation and drug response/resistance. Additionally, one can measure how
closely the model’s predicted gene-expression profiles match those observed in SCC 29
colon cancer cell lines. Furthermore, the model’s sensitivity and specificity can be analyzed
in different scenarios and compared to available data. Finally, one can also assess the
model’s generalizability by examining its performance when applied to similar yet distinct
cancer cell lines. The multi-dimensional clustering algorithm will use a combination of
unsupervised machine learning techniques to detect patterns and group similar data points
in the time series. This will help the identification of clusters of data points that correspond
to specific types of cancer. The statistical analysis will use predictive models to analyze
the data and build a model. The ML algorithms employed will use supervised learning
algorithms to learn from labeled data and identify patterns in the data.

2.7. Proposed Algorithm

Time series algorithms for cancer detection can be used to detect changes in biomarkers
over time, such as an increase in the levels of certain proteins, chemicals, or markers in
a patient’s blood or tissue, that could indicate the presence of cancer. AI can be used to
analyze time series data in cancer detection, with several machine learning algorithms and
data mining methods. RF, a supervised learning algorithm, can be used to extract detailed
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structural information from time series datasets. In comparison, LSTM, memory-based
neural network architecture, can be used to detect long-term dependencies and periodic
patterns in the given data. Combining these two architectures can help model the data
more accurately and accurately predict its future behavior. Considering the number users
(u) wearing the smart sensor in a particular time interval (t), the multivariate time series of
user ‘u’ is denoted as Au, and in the i-th dimension, as Au

i. It is written as follows:

Au =
{

A1
u, A2

u, A3
u, . . . . . ., AX

u

}
(1)

Ai
u =

{
Ai

u,1, Ai
u,2, Ai

u,3, . . . . . ., Ai
u,T

}
; i = 1, 2, 3, . . . , T; (2)

where X denotes the total number of dimensions, and T denotes the length of the time
series. The convolution operation is performed as follows:

A(t) = f

(
i

∑
a=1

t

∑
b=1

ea+x(d−1),bαa,b + y

)
(3)

Let’s identify the pooling operation time (t), which can be formulated as follows:

p(t) = g(A((t − 1) ∗ i + 1), (t − 1) ∗ i + 2), . . . . ., A(ti)) (4)

where A(∗) indicates the convolution output, i indicates the size of kernel (k), and g in-
dicates the strategy followed for the pooling operation. In terms of accuracy, combining
Random Forest and Long Short-Term Memory algorithms has been found to improve the
performance of cancer detection models. This comes from the ability of RF to capture the
complex nonlinearity of the data and the memory units in LSTM to store the temporal
patterns of the time series data. Additionally, combining these two algorithms gives the
model more robustness and the ability to make more informed predictions.

3. Results and Discussion

The proposed Time Series-Based Detection Model (TSBDM) has been compared with
existing models such as Computer-assisted Medical Image Classification (CMIC), Multi-
class arrhythmia detection (MCAD), DHO-Based Pretrained CNN Model (DPCM), and
deep DNA Machine Learning Model (DDMLM). Matlab r2022a was the tool used to
simulate the results.

3.1. Computation of Accuracy

Accuracy for a time series algorithm in cancer detection is the ability of the algorithm
to correctly identify instances of cancer based on data collected over a period of time. The
accuracy is computed with the help of the following Equation (5).

A =

(
TP + TN

TP + TN + FP + FN

)
(5)

Figure 2 shows the comparison of accuracy. In a computation cycle, the existing CMIC
reached 67.98%, MCAD reached 56.78%, DPCM obtained 82.74%, and DDMLM reached a
60.91% accuracy rate. The proposed model achieved a 91.30% accuracy rate.
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3.2. Precision

Precision for a time series algorithm in cancer detection is computed by dividing the
total number of true positive detections (i.e., correctly identified cancer cases) by the total
number of all detections made (true positives plus false positives). Precision is computed
with the help of the following Equation (6).

P =

(
TP

TP + FP

)
(6)

Figure 3 shows the comparison of precision. In a computation cycle, the existing CMIC
reached 64.76%, MCAD reached 53.84%, DPCM obtained 80.05%, and DDMLM reached a
57.84% precision rate. The proposed model achieved a 90.11% precision rate.

Eng. Proc. 2024, 6, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 2. Accuracy. 

3.2. Precision 
Precision for a time series algorithm in cancer detection is computed by dividing the 

total number of true positive detections (i.e., correctly identified cancer cases) by the total 
number of all detections made (true positives plus false positives). Precision is computed 
with the help of the following Equation (6). 

TPP
TP FP

 =  + 
 (6)

Figure 3 shows the comparison of precision. In a computation cycle, the existing 
CMIC reached 64.76%, MCAD reached 53.84%, DPCM obtained 80.05%, and DDMLM 
reached a 57.84% precision rate. The proposed model achieved a 90.11% precision rate. 

 
Figure 3. Precision. 

3.3. Recall 

Figure 3. Precision.

3.3. Recall

Recall is the degree of true fine predictions out of all actual proper positives. It helps
you understand how well an algorithm is classifying cancer instances that are effectively
recognized. Recall is computed with the assistance of the following Equation (7).

R =

(
TP

TP + FN

)
(7)
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Figure 4 shows the comparison of recall. In a computation cycle, the existing CMIC
reached 71.15%, MCAD reached 58.71%, DPCM obtained 86.61%, and DDMLM reached a
63.61% recall rate. The proposed model achieved a 92.46% recall rate.
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3.4. F1-Score

F1-score is an overall performance metric that is used to assess the accuracy of time
series algorithms for cancer detection. It measures the stability between precision and
recall, and is calculated by the following Equation (8).

F1 − Score =
(

2TP
2TP + FP + FN

)
(8)

Figure 5 shows the comparison of F1-scores. In a computation cycle, the existing CMIC
reached 67.81%, MCAD reached 53.49%, DPCM obtained 83.47%, and DDMLM reached a
58.21% F1-score. The proposed model achieved a 90.12% F1-score. Overall, the proposed
TSBDM reached 91.30% accuracy, 90.11% precision, 92.46% recall, and a 90.12% F1-score.
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• Limited application: Time series-based detection models are limited in their ability to
detect cancers effectively in all parts of the body, as their detection methodology is
largely reliant on the type of physiological signal being monitored.

• Sensitivity: Time series-based detection models are limited in their sensitivity, as most
of the current models only detect changes that occur over long time periods. This
means that early-stage cancers may be missed.

• Invasive: Time series-based detection models rely on invasive techniques for some of
their measurements, which can be uncomfortable and even painful for some patients.

4. Conclusions

Time series algorithms have great potential in cancer detection. They have been
successfully used in predicting individual patterns and detecting changes in tumor growth,
as well as aiding in diagnosis, prognosis, and treatment decisions. Time series algorithms
can be adapted to different types of cancers, providing an automated approach to medical
analysis. The proposed model reached 91.30% accuracy, 90.11% precision, 92.46% recall,
and a 90.12% F1-score. However, further research on these algorithms is needed to improve
accuracy. Additionally, formal validation studies must be conducted to ensure these
algorithms are safe and effective for clinical use. The future scope for time series algorithms
in cancer detection is very promising. By utilizing the temporal patterns of medical data,
time series algorithms can detect anomalies and changes in a patient’s health that may be
indicative of cancer or other conditions.
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