
Citation: Petrov, N.G.; Mulroy, T.J.;

Kalashnikov, A.N. Prototyping

Bespoke Sensor Industrial

Internet-of-Things (IIoT) Systems for

Small and Medium Enterprises

(SMEs). Eng. Proc. 2023, 58, 111.

https://doi.org/10.3390/ecsa-10-

16000

Academic Editor: Stefano Mariani

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Prototyping Bespoke Sensor Industrial Internet-of-Things (IIoT)
Systems for Small and Medium Enterprises (SMEs) †

Nikolay G. Petrov 1, Tim J. Mulroy 2 and Alexander N. Kalashnikov 2,*

1 Department of Data Science and Technical Services, Safefood360, Suite 10560, 26/27 Pembroke Street Upper,
D02 X36 Dublin, Ireland; npetrov.ie@gmail.com

2 Department of Engineering and Maths, Sheffield Hallam University, Sheffield S1 1WB, UK;
t.j.mulroy@shu.ac.uk

* Correspondence: a.kalashnikov@shu.ac.uk
† Presented at the 10th International Electronic Conference on Sensors and Applications (ECSA-10),

15–30 November 2023; Available online: https://ecsa-10.sciforum.net/.

Abstract: This paper aims to share our experiences gained from working on multiple industrial–
academic collaborative projects within the Digital Innovation for Growth (DIfG) regional programme.
This initiative provided academic expertise to low-resource SMEs. The projects primarily revolved
around measuring various process or structural health variables. The subsequent wireless reporting
of these results to an online dashboard and generating alert messages when variables exceeded pre-
defined thresholds were central to our work. Due to the diverse nature of our partners’ requirements,
there was no one-size-fits-all solution for the considered use cases. We will delve into our utilization
and insights regarding various IoT-related tools and technologies. These include ESP32 WiFi-enabled
microcontrollers, WiFi Manager, NTP time service, watchdog timers, Adafruit IO dashboards and the
Twilio SMS gateway, as well as LoRa modules and networks such as TNT and Helium. By effectively
combining these tools and technologies, we successfully completed prototypes that enabled testing
of the devices on-site.

Keywords: sensor IIoT; IIoT prototyping; IIoT for SMEs; IIoT low power; IIoT SMS alerts; IIoT LoRa
communication; IIoT reliability

1. Introduction

Advancements in low-cost WiFi-enabled microcontrollers (MCUs) and cloud infras-
tructure have generated a growing interest in the Industrial Internet of Things (IIoT) among
SMEs. This interest primarily stems from the potential benefits of storing and visualizing
sensor data in the cloud, thereby eliminating the need to maintain and transfer data from
local data loggers.

However, many SMEs lack the capability to independently develop an IIoT system and
are uncertain about the financial feasibility of funding an external development. In such
cases, collaborative projects between industry and academia, supported by government or
regional sources, emerge as a viable option for prototyping IIoT systems.

This paper presents our observations and findings based on several sensor IIoT pro-
totyping projects, i.a., conducted under the auspices of the Digital Innovation for Growth
(DIfG) programme [1]. Two projects were concerned with temperature sensing and one
with sensing impacts.

IIoT technology has garnered significant interest from industrial partners, who have
shown a willingness to engage in basic maintenance tasks for their sensor-based IIoT
systems, such as on site commissioning and Arduino script uploads. Their main priorities
include cost predictability for both the initial implementation and ongoing maintenance,
the utilization of readily available off-the-shelf components for spares and replacements
and the suitability of the prototype for operation within their industrial environment.

Eng. Proc. 2023, 58, 111. https://doi.org/10.3390/ecsa-10-16000 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/ecsa-10-16000
https://doi.org/10.3390/ecsa-10-16000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-1431-3836
https://ecsa-10.sciforum.net/
https://doi.org/10.3390/ecsa-10-16000
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/ecsa-10-16000?type=check_update&version=1


Eng. Proc. 2023, 58, 111 2 of 8

Developers, on the other hand, emphasize the importance of having access to highly
functional components that can be easily assembled. They also seek low-cost or free
options for related services, accompanied by example projects, application notes and
similar resources to aid in their development process.

In Section 2, we delve into the fundamental setup that proved to be adequate for all
three projects. Section 3 highlights firmware features added for usability and reliability. The
utilization of text messages to deliver alerts and alarms to users is addressed in Section 4.
Section 5 focuses on achieving operation-off WiFi. Finally, Section 6 provides the summary
and conclusion of the paper.

2. The Basic Sensor IIoT System Design

An IIoT sensor system can be seen as a convenient alternative to a conventional data
logger. Instead of simply recording measurements at set time intervals and storing them in
non-volatile memory to prevent data loss during power outages or accidental shutdowns,
this system transmits each data point to the cloud. This enables reliable long-term storage
and archiving of the data, as well as instant access from any connected device for checking
or trend analysis, assuming that server-side visualization is available. By utilizing this
use case, it becomes possible to significantly reduce power consumption by allowing the
sensor and communication link to enter a sleep mode after processing each newly acquired
data point.

From a hardware perspective, it is essential for a prototype of this system to be en-
closed in a secure casing with robust connections and the necessary IP rating for ingress
protection. To simplify the process of commissioning, maintenance and relocation, it is
generally preferable for the prototype to be powered by a battery. For battery-powered
prototypes, it is important to utilize the deep sleep MCU mode, which has certain re-
strictions compared to the light sleep mode more suitable for mains-powered devices.
Additionally, the devices should have built-in battery charging and protection circuits. An
ideal prototyping ecosystem should also offer a wide range of well-documented link and
sensor modules that can be easily attached or detached. However, off-the-shelf ecosystems
with such capabilities are limited in availability. In our case, we developed the prototypes
using the M5StickC ESP-32-based device, which features a built-in 120 mAh battery in
the standard configuration, the option to add an additional 186,50 2200 mAh battery and
a selection of dedicated HAT and general-purpose Grove-interfaced modules [2]. This
hardware only operates in the 2.4 GHz WiFi band, but this was not an issue for our projects
(Figure 1).

Eng. Proc. 2023, 58, 111 3 of 8 

Figure 1. Block diagram of the hardware setup and wireless connections that were fully prototyped. Figure 1. Block diagram of the hardware setup and wireless connections that were fully prototyped.



Eng. Proc. 2023, 58, 111 3 of 8

To complete the WiFi-capable hardware setup, it is necessary to integrate a cloud back-
end. The small and medium-sized enterprises (SMEs) we collaborated with did not find
dedicated company servers or large-scale IoT servers designed for diverse, high-volume
industrial clients appealing. These servers often require configuration and administra-
tion and lack user-friendly dashboard builders. After careful evaluation, we opted for
AdafruitIO [3] as our cloud provider. AdafruitIO stood out due to its transparent pricing
structure, extensive documentation and the availability of a free tier for experimentation.
An example of the developed user front end (dashboard) and developer’s back end (feed)
are presented side-to-side in Figure 2. Additional factors influencing our decision were
discussed in [4], Section 5, where another dashboard is presented.

In summary, the prototyped sensor IIoT systems follow a measure–communicate–sleep
cycle using the M5Stick ecosystem and leverage the AdafruitIO cloud server. Considering
that the estimated current consumption of the M5Stick in deep sleep mode is around
2–3 mA [5], line 36, it has the estimated capability to run on a fully charged additional
18650 battery for around one month. This assumes that the measurement–communication
phase of the cycle, which consumes more than 100 mA, occurs infrequently, such as once
per hour for a very short period of time.

Eng. Proc. 2023, 58, 111 3 of 8 

Figure 1. Block diagram of the hardware setup and wireless connections that were fully prototyped. 

Figure 2. Cont.



Eng. Proc. 2023, 58, 111 4 of 8Eng. Proc. 2023, 58, 111 4 of 8 
 

 

 
Figure 2. An example of a dashboard (user’s front end, above) and a feed (developer’s back end, 
below) on Adafruit IO. 

In summary, the prototyped sensor IIoT systems follow a measure–communicate–
sleep cycle using the M5Stick ecosystem and leverage the AdafruitIO cloud server. Con-
sidering that the estimated current consumption of the M5Stick in deep sleep mode is 
around 2–3 mA [5], line 36, it has the estimated capability to run on a fully charged addi-
tional 18650 battery for around one month. This assumes that the measurement–commu-
nication phase of the cycle, which consumes more than 100 mA, occurs infrequently, such 
as once per hour for a very short period of time. 

3. Firmware Features Added for Usability and Reliability 
The initial development of the firmware involved using the Arduino IDE and Ada-

fruitIO library [6]. However, at a later stage, the library ceased to function, leading to the 
development and sharing of a POST-based workaround [7]. This workaround was imple-
mented in all three projects, and we encountered no data loss or communication issues. 

Occasionally, the MCU would hang up when connecting to the WiFi access point, but 
due to the intermittent nature of this fault, we chose not to fully investigate it. Instead, we 
implemented a watchdog timer that resets the MCU after a set time. If the connection after 
a watchdog reset is re-established, the code proceeds to the loop function, where the 
watchdog timer is cleared. 

To improve user-friendliness, several significant additions were deemed highly ben-
eficial: 

Figure 2. An example of a dashboard (user’s front end, above) and a feed (developer’s back end,
below) on Adafruit IO.

3. Firmware Features Added for Usability and Reliability

The initial development of the firmware involved using the Arduino IDE and AdafruitIO
library [6]. However, at a later stage, the library ceased to function, leading to the develop-
ment and sharing of a POST-based workaround [7]. This workaround was implemented in
all three projects, and we encountered no data loss or communication issues.

Occasionally, the MCU would hang up when connecting to the WiFi access point, but
due to the intermittent nature of this fault, we chose not to fully investigate it. Instead,
we implemented a watchdog timer that resets the MCU after a set time. If the connection
after a watchdog reset is re-established, the code proceeds to the loop function, where the
watchdog timer is cleared.

To improve user-friendliness, several significant additions were deemed highly beneficial:

• The use of a WiFi manager [8] was implemented to eliminate the necessity for embed-
ding WiFi credentials into the code. This approach offers flexibility during installation,
streamlines the process of reconnecting in case of password changes and permits the
use of devices at different locations without requiring reprogramming.

• It was observed that the device’s built-in timer, responsible for awakening it from
sleep mode, exhibited an inaccuracy on the order of approximately 4 min over a 24 h
period, which proved to be unsatisfactory for our partners. To address this issue, we
implemented a solution involving the calculation of the time remaining until the next
wake-up event, following the acquisition of precise time readings from the network



Eng. Proc. 2023, 58, 111 5 of 8

time protocol (NTP) server. Subsequent to this adjustment, the readings were obtained
with an acceptable margin of uncertainty, typically within a few seconds.

• Welcome messages and connection status notifications were presented to assure users
of the system’s correct functioning, particularly given that the screen was subsequently
powered off to conserve energy while in sleep mode.

4. Communicating Alarms/Alerts

While transitioning data logging to an online platform is valuable, it is important to
note that, in the context of two out of three IIoT systems, generating distinct messages
was necessary when readings fell outside of the predefined limits. Adafruit IO offers a
notification service for account holders, allowing them to receive alerts via either email
(accessible for trial accounts) or SMS (requires an AdafruitIO+ paid account), as depicted
in Figure 3.

Eng. Proc. 2023, 58, 111 5 of 8 
 

 

• The use of a WiFi manager [8] was implemented to eliminate the necessity for em-
bedding WiFi credentials into the code. This approach offers flexibility during instal-
lation, streamlines the process of reconnecting in case of password changes and per-
mits the use of devices at different locations without requiring reprogramming. 

• It was observed that the device’s built-in timer, responsible for awakening it from 
sleep mode, exhibited an inaccuracy on the order of approximately 4 min over a 24 h 
period, which proved to be unsatisfactory for our partners. To address this issue, we 
implemented a solution involving the calculation of the time remaining until the next 
wake-up event, following the acquisition of precise time readings from the network 
time protocol (NTP) server. Subsequent to this adjustment, the readings were ob-
tained with an acceptable margin of uncertainty, typically within a few seconds. 

• Welcome messages and connection status notifications were presented to assure us-
ers of the system’s correct functioning, particularly given that the screen was subse-
quently powered off to conserve energy while in sleep mode. 

4. Communicating Alarms/Alerts 
While transitioning data logging to an online platform is valuable, it is important to 

note that, in the context of two out of three IIoT systems, generating distinct messages was 
necessary when readings fell outside of the predefined limits. Adafruit IO offers a notifi-
cation service for account holders, allowing them to receive alerts via either email (acces-
sible for trial accounts) or SMS (requires an AdafruitIO+ paid account), as depicted in Fig-
ure 3. 

 
Figure 3. Setting notifications for a reading, getting out of set bounds on AdafruitIO. 

Email messages can also be sent using the Arduino reference library EmailSender [9]. 
Another possibility of notifying the end user of something requiring attention is by 

sending an SMS to their phone number. There are several internet-to-SMS service provid-
ers available; we used Twilio in our developments because of their international availabil-
ity, good number of examples for various programming languages and a possibility to try 
it for free using sign-up credit. We used an Arduino library [10] following a detailed tuto-
rial [11]. The Twilio messages were reliably delivered inside both the UK and Ireland, but 
we could not manage operating it cross-border. Figure 4 presents a console’s output and 
some of the messages received using this service. 

Figure 3. Setting notifications for a reading, getting out of set bounds on AdafruitIO.

Email messages can also be sent using the Arduino reference library EmailSender [9].
Another possibility of notifying the end user of something requiring attention is by

sending an SMS to their phone number. There are several internet-to-SMS service providers
available; we used Twilio in our developments because of their international availability,
good number of examples for various programming languages and a possibility to try it for
free using sign-up credit. We used an Arduino library [10] following a detailed tutorial [11].
The Twilio messages were reliably delivered inside both the UK and Ireland, but we could
not manage operating it cross-border. Figure 4 presents a console’s output and some of the
messages received using this service.

Eng. Proc. 2023, 58, 111 6 of 8 
 

 

 
Figure 4. Operating SMS using Arduino library (console output on the left, examples of received 
messages on the right). 

5. Operating IoT Devices off WiFi 
While WiFi networks are prevalent at most sites, certain end users might not have 

access to them or may be reluctant to share their login information due to the associated 
inconvenience and security considerations. An alternative approach involves the use of 
wireless modem modules to connect to existing mobile networks with extensive coverage. 
However, fully featured LTE modems tend to be relatively expensive and power-hungry, 
making them less suitable for IIoT purposes. On the other hand, NB-IoT modems, better 
suited for these applications, are not yet widely supported, with only one UK provider 
offering them at the time of writing. Additionally, managing SIM cards (acquisition, reg-
istration, billing, security, etc.) poses additional burdens. 

Consequently, we initiated an exploration of commercially available radio modules 
engineered for extended-range communication. Despite the seemingly favourable speci-
fications evident in datasheets and select online demonstrations, we confronted formida-
ble challenges when striving to achieve communication distances surpassing 100 m within 
a lightly urbanized setting. This was particularly pronounced during our utilization of 
peer-to-peer module configurations, inclusive of both nRF24L01 + modules, with and 
without RF amplification, and some LoRa modules. 

An effective approach entailed establishing connections with a publicly available net-
work characterized by extensive coverage. Our evaluation encompassed both the LoRa-
based The Things Network (TTN), which offers open access, and the subscription-based 
Helium. It is noteworthy that both of these networks adhere to a decentralized model, 
relying on nodes privately procured and managed by network associates. Helium was 
further explored by us because of substantially wider coverage at reasonable cost. 

To investigate this possibility, we employed an Arduino library tailored for the LoRa-
E5 Grove-connected modules [12] in accordance with a comprehensive tutorial [13]. Dur-
ing our coverage and reliability assessment, the module was woken up and transmitted 
data through three train rides and two taxi journeys. It transmitted two bytes, deliberately 
incremented by five at each wake-up cycle. While the data flow from the Helium console 
to a Google spreadsheet exhibited occasional interruptions and resets, it ultimately af-
firmed the network’s overall resilience as shown in Figure 5. 

Figure 4. Operating SMS using Arduino library (console output on the left, examples of received
messages on the right).



Eng. Proc. 2023, 58, 111 6 of 8

5. Operating IoT Devices off WiFi

While WiFi networks are prevalent at most sites, certain end users might not have
access to them or may be reluctant to share their login information due to the associated
inconvenience and security considerations. An alternative approach involves the use of
wireless modem modules to connect to existing mobile networks with extensive coverage.
However, fully featured LTE modems tend to be relatively expensive and power-hungry,
making them less suitable for IIoT purposes. On the other hand, NB-IoT modems, better
suited for these applications, are not yet widely supported, with only one UK provider
offering them at the time of writing. Additionally, managing SIM cards (acquisition,
registration, billing, security, etc.) poses additional burdens.

Consequently, we initiated an exploration of commercially available radio modules
engineered for extended-range communication. Despite the seemingly favourable specifi-
cations evident in datasheets and select online demonstrations, we confronted formidable
challenges when striving to achieve communication distances surpassing 100 m within
a lightly urbanized setting. This was particularly pronounced during our utilization of
peer-to-peer module configurations, inclusive of both nRF24L01 + modules, with and
without RF amplification, and some LoRa modules.

An effective approach entailed establishing connections with a publicly available
network characterized by extensive coverage. Our evaluation encompassed both the LoRa-
based The Things Network (TTN), which offers open access, and the subscription-based
Helium. It is noteworthy that both of these networks adhere to a decentralized model,
relying on nodes privately procured and managed by network associates. Helium was
further explored by us because of substantially wider coverage at reasonable cost.

To investigate this possibility, we employed an Arduino library tailored for the LoRa-
E5 Grove-connected modules [12] in accordance with a comprehensive tutorial [13]. During
our coverage and reliability assessment, the module was woken up and transmitted data
through three train rides and two taxi journeys. It transmitted two bytes, deliberately
incremented by five at each wake-up cycle. While the data flow from the Helium console to
a Google spreadsheet exhibited occasional interruptions and resets, it ultimately affirmed
the network’s overall resilience as shown in Figure 5.

Eng. Proc. 2023, 58, 111 7 of 8 
 

 

 
Figure 5. A visual depiction of the data captured through the Helium user console during the LoRa 
transmitterʹs engagement in three train rides and two taxi journeys. 

The Helium network functions on a package-oriented data transmission system, 
where users are billed according to the volume of packages received by the network’s 
gateways. Quite often, the very same data packet is captured simultaneously by multiple 
gateways. Thanks to reasonably low packet charges, the resulting redundancy does not 
place a substantial financial burden on users. However, it is important to note that the 
network enforces a limitation on packet size, capping it at a maximum of 24 bytes. While 
this constraint might seem restrictive, it is, in fact, a suitable fit for many IIoT applications. 

6. Summary and Conclusions 
We have elucidated the diverse methods employed in the successful prototyping of 

customized IIoT sensor systems tailored to resource-constrained small and medium en-
terprises (SMEs). Our choice of the M5Stick hardware ecosystem, renowned for its mod-
ularity, the presence of enclosed displays and efficient battery and charging circuits, 
proved instrumental. In order to assess the data reporting capabilities over extended dis-
tances, we conducted an evaluation of LoRa-E5 within the decentralized Helium network, 
thereby affirming the network’s extensive coverage and dependable performance. 

Additionally, the Arduino software ecosystem played a pivotal role by facilitating 
rapid integration and evaluation of diverse firmware options. This process contributed 
significantly to the enhancement in both reliability and usability of the prototypes. It is 
important to note that many of the lessons we have learned and reported hold universal 
relevance and can be applied to the development of similar IIoT systems with confidence. 

Author Contributions: Conceptualization, N.G.P. and A.N.K.; methodology, N.G.P. and A.N.K.; 
software, A.N.K.; validation, N.G.P.; formal analysis, N.G.P.; investigation, T.J.M.; resources, N.G.P.; 
data curation, N.G.P.; writing—original draft preparation, A.N.K.; writing—review and editing, 
N.G.P., T.J.M. and A.N.K.; visualization, A.N.K.; supervision, N.G.P. and T.J.M.; project administra-
tion, N.G.P. and T.J.M. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: We did not upload the obtained data to a public repository because of 
the amount of work involved in properly describing and labelling these. However, we are happy to 
supply the reported data on request. 

Figure 5. A visual depiction of the data captured through the Helium user console during the LoRa
transmitter’s engagement in three train rides and two taxi journeys.

The Helium network functions on a package-oriented data transmission system, where
users are billed according to the volume of packages received by the network’s gateways.
Quite often, the very same data packet is captured simultaneously by multiple gateways.
Thanks to reasonably low packet charges, the resulting redundancy does not place a
substantial financial burden on users. However, it is important to note that the network



Eng. Proc. 2023, 58, 111 7 of 8

enforces a limitation on packet size, capping it at a maximum of 24 bytes. While this
constraint might seem restrictive, it is, in fact, a suitable fit for many IIoT applications.

6. Summary and Conclusions

We have elucidated the diverse methods employed in the successful prototyping
of customized IIoT sensor systems tailored to resource-constrained small and medium
enterprises (SMEs). Our choice of the M5Stick hardware ecosystem, renowned for its mod-
ularity, the presence of enclosed displays and efficient battery and charging circuits, proved
instrumental. In order to assess the data reporting capabilities over extended distances, we
conducted an evaluation of LoRa-E5 within the decentralized Helium network, thereby
affirming the network’s extensive coverage and dependable performance.

Additionally, the Arduino software ecosystem played a pivotal role by facilitating
rapid integration and evaluation of diverse firmware options. This process contributed
significantly to the enhancement in both reliability and usability of the prototypes. It is
important to note that many of the lessons we have learned and reported hold universal
relevance and can be applied to the development of similar IIoT systems with confidence.

Author Contributions: Conceptualization, N.G.P. and A.N.K.; methodology, N.G.P. and A.N.K.;
software, A.N.K.; validation, N.G.P.; formal analysis, N.G.P.; investigation, T.J.M.; resources, N.G.P.;
data curation, N.G.P.; writing—original draft preparation, A.N.K.; writing—review and editing,
N.G.P., T.J.M. and A.N.K.; visualization, A.N.K.; supervision, N.G.P. and T.J.M.; project administration,
N.G.P. and T.J.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We did not upload the obtained data to a public repository because of
the amount of work involved in properly describing and labelling these. However, we are happy to
supply the reported data on request.

Acknowledgments: The authors gratefully acknowledge support from the Digital Innovation for
Growth (DIfG) programme.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Digital Innovation for Growth Welcome Page. Available online: https://www.shu.ac.uk/business/start-your-business/digital-

innovation-for-growth (accessed on 30 September 2023).
2. M5Stick Product Page. Available online: https://shop.m5stack.com/products/stick-c (accessed on 30 September 2023).
3. AdafruitIO. Available online: https://learn.adafruit.com/welcome-to-adafruit-io (accessed on 30 September 2023).
4. Elyounsi, A.; Kalashnikov, A.N. Predictive IoT Temperature Sensor. Eng. Proc. 2022, 27, 55. [CrossRef]
5. Example Code for Sleep Modes on M5Stick. Available online: https://github.com/m5stack/M5StickC/blob/master/examples/

Advanced/AXP192/sleep/sleep.ino (accessed on 30 September 2023).
6. Adafruit IO Arduino Library. Available online: https://github.com/adafruit/Adafruit_IO_Arduino (accessed on 30 Septem-

ber 2023).
7. Using POST to Add Data Points to a Feed. Available online: https://forums.adafruit.com/viewtopic.php?f=56&t=177055

(accessed on 30 September 2023).
8. WiFiManager Code Page. Available online: https://github.com/tzapu/WiFiManager (accessed on 30 September 2023).
9. EmailSender, Arduino Refernce Library. Available online: https://www.arduino.cc/reference/en/libraries/emailsender/

(accessed on 30 September 2023).
10. Demuri, A. Twilio-esp32-client. Available online: https://github.com/ademuri/twilio-esp32-client (accessed on 30 Septem-

ber 2023).
11. Send SMS with the ESP32 (Twilio). Available online: https://randomnerdtutorials.com/send-sms-esp32-twilio/ (accessed on 30

September 2023).

https://www.shu.ac.uk/business/start-your-business/digital-innovation-for-growth
https://www.shu.ac.uk/business/start-your-business/digital-innovation-for-growth
https://shop.m5stack.com/products/stick-c
https://learn.adafruit.com/welcome-to-adafruit-io
https://doi.org/10.3390/ecsa-9-13337
https://github.com/m5stack/M5StickC/blob/master/examples/Advanced/AXP192/sleep/sleep.ino
https://github.com/m5stack/M5StickC/blob/master/examples/Advanced/AXP192/sleep/sleep.ino
https://github.com/adafruit/Adafruit_IO_Arduino
https://forums.adafruit.com/viewtopic.php?f=56&t=177055
https://github.com/tzapu/WiFiManager
https://www.arduino.cc/reference/en/libraries/emailsender/
https://github.com/ademuri/twilio-esp32-client
https://randomnerdtutorials.com/send-sms-esp32-twilio/


Eng. Proc. 2023, 58, 111 8 of 8

12. Helium-E5-DHT22. Available online: https://gist.github.com/NorHairil/808ec64b1d4eac3f4b6f286a9392abce (accessed on 30
September 2023).

13. Mutalib, H. Sending Data to Helium Console using Grove LoRa-E5. Available online: https://www.cytron.io/tutorial/sending-
data-to-helium-console-using-grove-lora-e5 (accessed on 30 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://gist.github.com/NorHairil/808ec64b1d4eac3f4b6f286a9392abce
https://www.cytron.io/tutorial/sending-data-to-helium-console-using-grove-lora-e5
https://www.cytron.io/tutorial/sending-data-to-helium-console-using-grove-lora-e5

	Introduction 
	The Basic Sensor IIoT System Design 
	Firmware Features Added for Usability and Reliability 
	Communicating Alarms/Alerts 
	Operating IoT Devices off WiFi 
	Summary and Conclusions 
	References

