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Abstract: This work focused on the study of efficient solutions for the improvement of the mechanical
behavior and movement capability of industrial devices with mobile parts subjected to three-point
bending load. To achieve the aim of developing efficient engineering solutions, several stages were
followed. A sensitivity analysis was conducted on one of the beams in order to determine the
influence of each variable in the mass and in the displacement’s parameter space. It has been shown
that parameterizing the ANSYS input file is effective for finding out how sensitive the system is
to the design variables studied. The results of the sensitivity analysis may be used in the future to
choose the variable weights that will be used in optimization techniques and processes. Further study
might be performed in the future to attempt to find a way to generalize the methodology for different
models and/or in different situations.

Keywords: finite element method; static analysis; sensitivity analysis

1. Introduction

In numerous applications involving industrial apparatus, the load accelerates elec-
trically motor-driven moving components. These actuators accelerate twelve times more
rapidly than gravity. Acceleration necessitates structures that are more rigid and robust.
Stiffness influences equipment efficacy more than strength. Accelerations can cause equip-
ment deflection and output reduction. Increased vibrations may lead to complications.
Geometric optimization increases stiffness more so than material selection. Geometry
may increase the stiffness of a burden. The combination of mass and deflections is more
effective than deflections alone. By reducing the size of industrial machinery with movable
components, it is possible to increase their speed without diminishing their mechanical
performance. Because thin-walled structures can be reinforced internally and have high
effectiveness by mass unit, hollow solid sections present advantages in engineering appli-
cations in relation to their bulk counterparts, with the same outer section dimension and
section shape. Similar beams to the one presented herein were already studied in terms of
their mechanical behavior in [1].

Engineering structures like plates and casings need to be stiff—the stiffness in form of
the ribbed, webbed, and curved walls is the typical solution. This objective necessitates the
previous two. Ribs and webbing provide reinforcement for thin-walled components [2].
Orlov states that ribs increase the moment of inertia and strength [2]. Few studies have
examined structural steel’s stiffening. These aircraft structures, which have been in use
since the beginning of the 20th century, may have been investigated in the past [3]. Vieira
and colleagues investigated the mechanics of structural stiffening. This effort could benefit
from the author’s design [4]. Thin-walled steel columns reinforced by Liu increase their
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bending and torsion strength without increasing their weight [5]. Steel beam dynamics
are influenced by transverse ribs [6]. Under various load regimens, the same author evalu-
ated the spatial stability of rib-reinforced thin-walled beams. Differential equations were
solved by orthogonalization of Bubnov–Galerkin. Problems were resolved by analyzing
and substantiating circumstances. Eigenvalue problems were transformed from general
solutions. Experiments confirmed the validity of the method. It is computed [7]. Liu and
Gannon welded plates to a loaded W-shaped steel girder. Reinforcement patterns, welding
preload magnitudes, and unreinforced beam defects were modeled using the Finite Element
Method [8]. In [9], the type, size, and location of stiffeners were proposed. This effort
improves the mechanical performance of thin-walled beams by adding ribs, lattice, and
sandwich panels to rectangular hollow-box beams.

2. Materials and Methods

Sensitivity analysis utilized a single Finite Element Model (FEM) model. The FEM
model with applied loading and degrees of freedom (DOF) constraints is depicted in
Figure 1 (left). Several keypoints were selected to depict the data presented in this article,
as shown in Figure 1 (right).
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steel: E = 210 GPA, 7890 kg/m3, and 0.29 [-] Poisson coefficient. The applied load intensity 
was N, the element type was SHELL63, and the average lattice element size was 2.5 mm. 

Figure 1. Applied load and DOF constraints (left); points used to calculate displacements on
sensitivity analysis procedure (right), adapted from [1].

These keypoints were chosen because their coordinates are unaffected by a change in
the variable values during optimization. As these areas are extensively reinforced with ribs,
it is not anticipated that the thin material at the under-consideration thicknesses can result
in significant local deformation. This was demonstrated by analyzing large deformation
in terms of geometrical nonlinearity. The outcome was identical to that of a linear static
analysis. Providing an analysis falls outside the scope of this endeavor at this time. During
the evaluation of the thickness variable LG3, values between 2 and 4 mm were considered.
The thickness remained unchanged at 3 mm in all other instances. Clearly, the laterals have
a greater effect on the results than the initial beams subject to torsion stresses. The sandwich
panel was subservient to the lateral reinforcements from a mechanical standpoint. Thus,
the height of the intermediate compartments was diminished. These sites were selected
at locations where changes in geometric variables do not influence any coordinates. This
eliminated the direct impact of changes in design variables on the results. Requesting local
results from points whose coordinates change as geometric variables change would be
misleading. For each set of variable values, we captured data from the same points (P1,
P2, and P3), but these points have distinct coordinates, i.e., they are in a different zone
of the model. This article makes use of the characteristics for typical steel: E = 210 GPA,
7890 kg/m3, and 0.29 [-] Poisson coefficient. The applied load intensity was N, the element
type was SHELL63, and the average lattice element size was 2.5 mm. For the model’s
sensitivity analysis, three design variables characterizing the most important stiffeners
properties were chosen, Figure 2 shows the geometric variables LG1, LG2 and LG3 on
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Beam 1—Pattern 1. LG1 is the distance from the center of the beam to the inner wall of the
beam in the direction of the section width; LG2 is the distance from the center of the section
of the beam to the inner wall of the beam in the direction of the section height and LG3 is
the thickness of all the walls of the beam.
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The outer section dimensions are maintained. It is assumed, from an industrial
standpoint, that all beams are constructed with panels of identical thickness. The goal is to
obtain a set of reinforcements that is straightforward to assemble on a large scale.

3. Results and Discussion
3.1. Mesh Convergence

In order to obtain accurate results, a mesh sensitivity analysis was performed in
ANSYS Mechanical APDL. Element sizes of 2.5, 5, 10, 20 and 40 mm were used. Four
refinement levels were defined in order to compare the results of a mesh size with the ones
with double element size. The y deflection was measured in points P1, P2 and P3, shown in
Figure 1 (right). The results of the mesh convergence analysis are shown in Figures 3 and 4.

As expected, mesh refinement increases the accuracy of results, as they vary less with
decreasing element size. The element size of 2.5 mm was selected, as it originates accurate
results, with a maximum error of 0.16%. In Figures 3 and 4, the results are very close
in every case, because the same model was used, with the same conditions. The only
difference is the mesh size which is not a critical parameter here.
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3.2. Sensitivity Analysis

This section contains graphs generated from Tables 1–3. ANSYS MECHANICAL
APDL was used to generate Tables 1–3 by modifying one variable at a time and repeatedly
executing the ANSYS input file. Other variables are held constant in geometry. Nonetheless,
the beam’s mass varies when a single geometric variable is altered. The linearity of the
relationship between the variables and the deflections and between the variables and
the mass was determined using a linear fit. Numerical and statistical information was
displayed in Figures 5–7 and Tables 1–3. Because the figures depict the total deflection of
the three selected points in relation to the variable’s values and approximate trendlines, this
was the case. In contrast, Tables 1–3 illustrate the masses and deflections of the obtained
beams at each of the locations P1, P2, and P3. Figures 5–7 are the graphical representation
of the results shown in Tables 1–3. As the obtained results appear to show almost linear
dependence on the parameters chosen, linear fits are added to the charts. The results
are expressed as a single series, representing the aggregate of the absolute deflections at
locations P1, P2, and P3 (see Figures 5–7), for LG1, LG2, and LG3, respectively.
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Table 1. Sensitivity analysis for the LG1 variable under bending loads.

j = 5 j = 4 j = 3 j = 2 j = 1

0.055 0.05 0.045 0.04 0.035 LG1

77.981 79.176 80.372 81.567 82.762 mass (kg)

−2.29 × 10−6 −2.18 × 10−6 −2.06 × 10−6 −1.95 × 10−6 −1.84 × 10−6 δyP1 (m)

−6.71 × 10−6 −6.67 × 10−6 −6.63 × 10−6 −6.58 × 10−6 −6.52 × 10−6 δyP2 (m)

−2.29 × 10−6 −2.18 × 10−6 −2.06 × 10−6 −1.95 × 10−6 −1.84 × 10−6 δyP3 (m)

1.13 × 10−5 1.10 × 10−5 1.08 × 10−5 1.05 × 10−5 1.02 × 10−5 δsum (m)

Table 2. Sensitivity analysis for the LG2 variable under bending loads.

j = 5 j = 4 j = 3 j = 2 j = 1

0.085 0.08 0.075 0.07 0.065 LG2

78.397 79.384 80.372 81.359 82.346 mass (kg)

−2.10 × 10−6 −2.08 × 10−6 −2.06 × 10−6 −2.04 × 10−6 −2.02 × 10−6 δyP1 (m)

−6.90 × 10−6 −6.75 × 10−6 −6.63 × 10−6 −6.51 × 10−6 −6.41 × 10−6 δyP2 (m)

−2.10 × 10−6 −2.08 × 10−6 −2.06 × 10−6 −2.04 × 10−6 −2.02 × 10−6 δyP3 (m)

1.11 × 10−5 1.09 × 10−5 1.08 × 10−5 1.06 × 10−5 1.05 × 10−5 δsum (m)

Table 3. Sensitivity analysis for the LG3 variable under bending loads.

j = 5 j = 4 j = 3 j = 2 j = 1

0.004 0.0035 0.003 0.0025 0.002 LG3

107.162 93.767 80.372 66.976 53.581 mass (kg)

−1.65 × 10−6 −1.84 × 10−6 −2.06 × 10−6 −2.34 × 10−6 −2.67 × 10−6 δyP1 (m)

−4.66 × 10−6 −5.49 × 10−6 −6.63 × 10−6 −8.27 × 10−6 −1.08 × 10−5 δyP2 (m)

−1.65 × 10−6 −1.84 × 10−6 −2.06 × 10−6 −2.34 × 10−6 −2.67 × 10−6 δyP3 (m)

7.97 × 10−6 9.17 × 10−6 1.08 × 10−5 1.29 × 10−5 1.62 × 10−5 δsum (m)
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The deflection increases strictly as the LG1 (Figure 5) and LG2 (Figure 6) variables
increase but decreases as the LG3 variable increases, see Figure 7. It can be seen that the
results at points P1 and P3 are identical, as can be seen in Tables 1–3. In terms of the
stiffness sensitivity of the investigated structure, variable LG3 is the most influential to its
value as with doubling its value the vertical displacement reduces by half. In other cases,
any increase of the parameter LG1 or LG2 lowers the resulting stiffness value −67% LG1
increase gives −10% stiffness decreases and 30% increase of LG2 results in −6.7% decrease,
respectively. This is expected, as this variable is applied to all the walls of the beam, so
its influence is total, while the influence of LG1 and LG2 on the mechanical behavior of
the beam is partial, as it can be seen in Figures 5–7. is possible to observe that the beams’
deflections are in the micrometer range, which, for applied load intensities of 1500 N in
three-point bending and taking into consideration the beams’ thinness, indicates the beams’
excellent stiffness.
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4. Conclusions

In result of performed analysis, it is clear that all the selected geometric variables,
LG1, LG2, and LG3, are adequate for optimization objectives. The results suggest that the
FEM model’s deflections are sensitive to them. Initial variable values were specified in
order to enable a large search space. The models are constrained geometrically, primarily
in terms of their inner section. The values of variables LG1 and LG2 cannot be so low as
to cause structural elements from the sides or top/bottom to collide, preventing further
optimization evaluations. This precludes the discovery of an optimal solution. Otherwise,
the interior ribs will be smaller than the average element size, leading to defects. LG3 is
the least essential variable in this regard. Nevertheless, it must be high enough to prevent
substantial nonlinear effects in future practical applications, while remaining low enough
to permit the production of lightweight components suitable for the applications intended
by this work. It has been shown that parameterizing the ANSYS input file is an effective
way to determine the system’s sensitivity to the investigated design variables. The results
of the sensitivity analysis may be used in the future to determine the variable weights for
optimization techniques and processes. This study presents only the analysis for a single
beam. Therefore, generalization of the findings for similar beams with slightly different
geometries is, therefore, not possible. The limitations of the methodology are, therefore, not
being unable to obtain a generalized model that allows the prediction of the sensitivity of
the studied variables for similar beams, with slightly different geometry. Nevertheless, the
study proves that the three geometric variables are useful for design optimization purposes.
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