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Abstract: Analysing the prey-predator model is the purpose of this paper. In interactions of the
Beddington–DeAngelis type, the predator consumes its prey. Researchers first examine the existence
and local stability of potential unbalanced equilibrium boundaries for the model. In addition, for
the suggested model incorporating the prey refuge, we investigate the Hopf bifurcation inquiry. To
emphasise our key analytical conclusions, we show some numerical simulation results at the end.
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1. Introduction

There are two types of predator–prey models: one is an ecological model and the other
is an epidemiological model. In the ecological model, interactions are between organisms,
including humans, and their physical environment. Epidemiological models are used to
study diseases in animals and humans. Also, the above study of ecology and epidemiology
is called eco-epidemiology. In 1949, Solomon first used the term ’functional response’. In
the late 1950s, C. S. (Buzz) Holling conducted experiments to investigate how predators
capture prey. In the resulting series of influential articles, Holling established three main
functional response types, which he referred to as Holling types I, II, and III. The Holling
type I functional response g(X,Y) = aX, where a > 0, is based on the principle of mass
action and depends on the prey. Therefore, in the event of a superabundant supply of
food, predators will feed at the highest rate possible for each individual predator, and a
subsequent rise in food supply will not be able to increase the eating rate further. Because
of this, it is given in the form g(X, Y) = bX

w+X , which is bounded as well as non-linear
(the Michaelis–Menten function or the Holling type II function). Except at low prey den-
sity, the Holling type III is similar to the type II, but the Holling type III prey capture
rate accelerates. The Holling type III functional response is of the form g(X, Y) = cX2

w+X2 ,
which is bounded as well as non-linear [1]. Up to a certain range, the Holling type II
functional response accurately describes the feeding rate; however, there may be circum-
stances in which an increase in predator density indicates a decrease in feeding rate because
of mutual interference between individual predators. For this reason, we transform the
Holling type II functional response into the Beddington–DeAngelis functional response,
g(X, Y) = bX

w1+Y+w2X [2]. DeAngelis proposed the Beddington–DeAngelis functional re-
sponse to solve the apparent problems with the predator–prey model. For describing
parasite-host interactions independently, Beddington offered the same kind of functional
response. It accurately represents the majority of the qualitative features of the ratio-
dependent model while avoiding the “low density problem”, which is typically con-
tentious [2–5]. The prey refuge and harvesting are incorporated into the eco-epidemiological
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model using Holling type II behaviour, which has been studied by many authors [6]. In this
paper, we analyze the Beddington–DeAngelis type eco-epidemiology model’s behaviour
towards the prey refuge and prey harvesting [7]. This piece is structured as follows: the
prey–predator system’s past is described in Section 1. In Section 2, the model formation is
presented. Section 3 shows some mathematical results like positivity, positive invariance
and boundedness. The existence of equilibrium points is described in Section 4. Local sta-
bility analyses are presented in Section 5. The global stability and Hopf-bifurcation analysis
is found in Sections 6 and 7. The results are presented numerically in Section 8. Finally, this
paper concludes with a few observations about the suggested system in Section 9.

2. Model Formation

The non-linear differential equations are:

dS
dT = r1S(1 − S+I

L )− ηIS − ω1SW
β1+µS+ϑW − E1H1S ,

dI
dT = ηIS − d1I − γ1(1−θ)IW

β1+(1−θ)I − E2H2I ,
dW
dT = −d2W + cγ1(1−θ)IW

β1+(1−θ)I + cω1SW
β1+µS+ϑW .

 (1)

and the positive values are W > 0, S > 0 and I > 0. All the parameter physiological
representations and units are shown in Table 1.

Table 1. The physiological meanings of the parameters are listed in the below chart.

Parameters Physiological Representation Units

ϑ Magnitude of interference of predator m
µ Effect of handing time for predator m

H1,H2 The harvesting effort of predator No. per unit area (tons)
r1 Prey growth rate per day (t−1)
L Environment carrying capacity No. per unit area (tons)

E2 and E1 Catchability coefficient of predator per day (t−1)
β1 Constant of half-saturation m
ω1 Susceptible prey rate of predation per day (t−1)
c Conversion rate of prey to predator 0 ≤ C ≤ 1

d1 and d2 Death rate of infected prey and predator per day (t−1)
γ1 Infected prey predation rate per day (t−1)
η The incidence of contamination for prey per day (t−1)
θ Refuge of prey m−1

W ,SandI Predator, susceptible and infected prey No. per unit area (tons)

ds
dt = rs(1 − s − i)− si − ωsw

β+µs+ϑw − h1s = f1(s, i, w),
di
dt = is − di − γ(1−θ)iw

β+(1−θ)i − h2i = f2(s, i, w),
dw
dt = −φw + cγ(1−θ)iw

β+(1−θ)i + cωsw
β+µs+ϑw = f3(s, i, w),

 (2)

where the reduced parameters are as follows: w = W
L , i = I

L , s = S
L , t = ηLT . r = r1

ηL ,

ω = ω1
ηL , h1 = E1 H1

ηL , d = d1
ηL , h2 = E2 H2

ηL , γ = γ1
ηL , β = β1

L , φ = d2
ηL , and the initial conditions

w(0) ≥ 0, s(0) ≥ 0 and i(0) ≥ 0. The above-defined functions are in R3
+.

3. Mathematical Results
3.1. Positive Invariance

Note the function fi(s, i, w), i = 1, 2, 3 are defined for s > 0, i > 0, w > 0.
lim

(s,i,w)→(0,0,0)
fi(s, i, w) = 0, i = 1, 2, 3. Using fi(0, 0, 0) = 0, i = 1, 2, 3 we can extend the

domain and conclude that the functions fi(s, i, w), i = 1, 2, 3 is locally Lipschitzian and
continuous on R3

+ ={(s, i, w) : s ≥ 0, i ≥ 0, w ≥ 0}. Hence, the solution of Equation (2) with
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non-negative initial condition exists and is unique. It can be shown that these solutions
exist for t > 0 and stay non-negative. Hence, the region R3

+ is invariant for the system (2).

3.2. Positivity of Solutions

Theorem 1. The solutions of (2) are positive in R3
+.

Proof. Since s(0) ≥ 0, i(0) ≥ 0 and w(0) ≥ 0 (2) becomes,

s(t) = s(0)exp
(∫ 1

0

[
r(1 − s − i)− i − ωw

β+µs+ϑw − h1

]
dt
)
≥ 0,

i(t) = i(0)exp
(∫ 1

0

[
s − d − γ(1−θ)w

β+(1−θ)i − h2

]
dt
)
≥ 0,

w(t) = w(0)exp
(∫ 1

0

[
−φ + cγ(1−θ)i

β+(1−θ)i +
cωs

β+µs+ϑw

]
dt
)
≥ 0.

Hence, Equation (2) is positive in R3
+.

3.3. Boundedness of Solution

Theorem 2. The solutions of (2) are bounded in R3
+.

Proof. The prey population in the system (2), it is observed that
ds
dt ≤ rs(1 − s).
We have, limt→∞ sups(t) ≤ 1.
Let z = s + i + w

dz
dt

=
ds
dt

+
di
dt

+
dw
dt

= rs(1 − s)− (1 − c)ωsw
β + µs + ϑw

− h1s− (d+ h2)i−
(1 − c)γ(1 − θ)iw

β + (1 − θ)i
− φw

≤ r
4
− h1s − (d + h2)i − φw

(
Max, rs(1 − s) =

r
4

and c < 1
)

≤ r
4
− ζz, where, ζ = min(h1, d + h2, ω)

We have,
dz
dt + ζz ≤ r

4 .
Using the fundamental concept of differential inequality, we derive
0 < z ≤ r

4ζ (1 − exp−ζt) + z(s0, i0, w0) exp−ζt .
For t → ∞, we have 0 < z < r

4ζ .
The solution (2) is bounded in R3

+, for all ϵ > 0, Ω = {(s, i, w) ∈ R3
+; s + i + w ≤ r

4ζ + ϵ}

4. Equilibrium Points

• E0(0, 0, 0) represents the essence of trivial equilibrium.
• E1(

r−h1
r , 0, 0) is the free of infection and predator-free equilibrium that exists for h1 < r.

• E2(s̄, ī, 0, ) is the predator-free equilibrium, where ī = r(1−d−h2)−h1
r+1 , s̄ = d + h2.

• The positive equilibrium is E∗(s∗, i∗, w∗), where, i∗ = −φβ(s−d−h2)+sγ(1−θ)[r−rs−h1]c
(1−θ)[φ(s−d−h2)+γ(rs+d+h2)c]

,

w∗ = c(s−d−h2)[(rs+d+h2)β+(1−θ)(r−rs−h1)s]
(1−θ)[φ(s−d−h2)+γ(rs+d+h2)c]

and s∗ exist unique positive roots of the be-

low polynomial equations, Us5 − Vs4 − Ws3 − Xs2 − Ys − Z = 0, where,
U = cϑr2e3e2

4, V = [rµe3e2
4e5 + ϑ(Fre3e4 − cre4H)], Z = e1[Me4e3β − ce1β(M − ω)],

W = [rµe1e2
3e2

4 + βHe4e5 + µMe4e5 + cre4ω + ϑ(FM + re3e4G − cre4M)]
X = [re3e2

4e5β + µe4e5H + e1e3e4βH + µe1e3e4M − Fω + ϑ(FM + GH − cre2
2e3e4β)]

Y = [rae1e2
3e2

4 + µe1e3e4H + e4e5Mβ − Gω + ϑ(GM − ce2
2aH)], M = e1[e2e3e4 − φβ],

F = c[rβ + e2e4 + re1e4], G = ce1[β − rβ − e2e4], e3 = cγ − φ, e4 = 1 − θ, e5 = φ + γcr
H = e4[e2 φ − re1e3 − cγe2] + (r + 1)φβ, e1 = d + h2, e2 = r − h1.
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5. Local Stability Analysis

It is necessary to calculate the Jacobian matrix, which is provided by the following

equation in order to evaluate the stability of the system (2). J(E) =

 x11 x12 x13
x21 x22 x23
x31 x32 x33


Where,

x11 = − (β+ϑw)ωw
(β+µs+ϑw)2 − i(r + 1)− h1 + r(1 − 2s), x12 = −s(1 + r), x13 = − (β+µw)ωs

(β+µs+ϑw)2 ,

x21 = i, x22 = s − d − h2 − βγw(1−θ)
(i(1−θ)+β)2 , x23 = − iγ(1−θ)

(i(1−θ)+β)
,

x31 = − (ϑw+β)ωcw
(µs+ϑw+β)2 , x32 = βcγ(1−θ)w

(β+i(1−θ))2 , x33 = −φ + icγ(1−θ)
β+(1−θ)i +

(µs+β)ωcs
(β+µs+ϑw)2 .

Theorem 3. If the trivial equilibrium point E0(0, 0, 0) is stable, if it is r < h1, then it is unstable.

Proof. The Jacobian matrix for E0(0, 0, 0) is J(E0) =

 r − h1 0 0
0 −d − h2 0
0 0 −φ

,

The characteristic equation of the Jacobian matrix is J(E0),
((r − h1) − λ01)((−d − h2) − λ02)(−φ − λ03) = 0, here, λ02 < 0, λ03 < 0 then the

equilibrium point E0 is stable; if it is r < h1, then it is unstable.

Theorem 4. If r(1 − d − h2) < h1 and cω(r−h1)
rβ+µ(r−h1)

< φ, the equilibrium point E1(
r−h1

r , 0, 0)
within the infected-free and predator-free regions is stable; otherwise, it is unstable.

Proof. The Jacobian matrix for E1 is J(E1) =


h1 − r −r+h1

r (r + 1) −ω(r−h1)
rβ+µ(r−h1)

0 1 − d − h2 − h1
r 0

0 0 cω(r−h1)
rβ+µ(r−h1)

− φ


The characteristic equation of the Jacobian matrix is J(E1),
(h1 − r − λ11)(1 − d − h2 − h1

r − λ12)(
cω(r−h1)

rβ+µ(r−h1)
− φ − λ13) = 0

here, if r(1 − d − h2) < h1 and cω(r−h1)
rβ+µ(r−h1)

< φ, the equilibrium point E1(
r−h1

r , 0, 0) within
the infected-free and predator-free regions is stable; otherwise, it is unstable.

Theorem 5. The predator-free equilibrium point E2(d + h2, r(1−d−h2)−h1
r+1 , 0) is locally asymptoti-

cally stable if φ > c(ω + γ).

Proof. The Jacobian matrix at E2 is J(E2) =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 where,

b11 = −r(d + h2), b12 = −(d + h2)(r + 1), b13 = −ω(d+h2)
β+µ(d+h2)

, b21 = r(1−d−h2)−h1
r+1 ,

b22 = 0, b23 = − iγ(1−θ)
(β+(1−θ)i) , b31 = 0, b32 = 0, b33 = −φ + (β+µs)ωcs

β+µs+ϑw + ciγ(1−θ)
β+(1−θ)i .

Here, characteristic equation of the Jacobian matrix is J(E2), λ3 + Rλ2 + Qλ + P = 0,
here, R = −u11 − u33, Q = −u21u12 + u33u11, P = u12u21u33. If P, R and RQ − P are
positive, according to the Routh-Hurwitz criterion, the negative real parts are the root
of the above characteristic equation if and only if P, R and RQ − P are positive. RQ −
P = u11u33(−u11 − u33) + u11u12u21. The sufficient conditions for u33 to be negative are
φ > c(ω + γ). Hence, E2(d + h2, r(1−d−h2)−h1

r+1 , 0) is locally asymptotically stable.

Theorem 6. Locally stable and displaying asymptotic stability, the positive equilibrium point E∗.
If G > 0, C > 0 and GD − C > 0. Where G = −v11 − v22, D = −v21v12 + v22v11 − v13v31 −
v23v32, C = v13(v22v31 − v21v32) + v23(v11v32 − v12v31).
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Proof. At E∗, the Jacobian matrix is J(E∗) =

 v11 v12 v13
v21 v22 v23
v31 v32 v33

 where,

v11 = − (β+ϑw)ωw
(β+µs+ϑw)2 − i(r + 1)− h1 + r(1 − 2s), v12 = −s(1 + r), v13 = − (β+µw)ωs

(β+µs+ϑw)2 ,

v21 = i, v22 = s − d − h2 − βγw(1−θ)
(i(1−θ)+β)2 , v23 = − iγ(1−θ)

(i(1−θ)+β)
,

v31 = − (ϑw+β)ωcw
(β+µs+ϑw)2 , v32 = βcγ(1−θ)w

(β+i(1−θ))2 , v33 = 0.
The characteristic equation of the Jacobian matrix is J(E∗),

λ3 + Gλ2 + Dλ + C = 0. (3)

Here, G = −v11 − v22, D = −v21v12 + v22v11 − v13v31 − v23v32, C = v13(v22v31 − v21v32)
+v23(v11v32 − v12v31). If G > 0, C > 0, GD − C > 0. According to the Routh-Hurwitz
criterion, the negative real parts are the root of the above characteristic equation if and only
if G, C and GD − C are positive. Hence, E∗ is locally asymptotically stable.

6. Global Stability Analysis

Theorem 7. The endemic equilibrium point E∗ is globally asymptotically stable.

Proof. Consider a Lyapunov function

V(s, i, w) =
[
s − s∗ − s∗ ln

s
s∗

]
+ d1

[
i − i∗ − i∗ ln

i
i∗

]
+ d2

[
w − w∗ − w∗ ln

w
w∗

]
dV
dt

=

[
s − s∗

w

]
s(t) + d1

[
i − i∗

i

]
i(t) + d2

[
w − w∗

w

]
w(t)

≤
(

s − s∗

s

)[
rs(1 − s − i)− si − ωsw

β + µs + ϑw
− h1s

]
+ d1

(
i − i∗

i

)[
is − di − γ(1 − θ)iw

β + (1 − θ)i
− h2i

]

+d2

(
w − w∗

w

)[
−φw +

cγ(1 − θ)iw
β + (1 − θ)i

+
cωsw

β + µs + ϑw

]

≤ −(s − s∗)[r(s + i)− r(s∗ + i∗) + (i − i∗)]− ω

[
w

β + µs + ϑw
− w∗

β + µs∗ + ϑw∗

]

−d1(i − i∗)
[
−(s − s∗) + γ(1 − θ)

(
w

β + (1 − θ)i
− w∗

β + (1 − θ)i∗

)]

−d2(w − w∗)

[
−cω

(
s

β + µs + ϑw
− s∗

β + µs∗ + ϑw∗

)
− cγ(1 − θ)

(
w

β + (1 − θ)i
− w∗

β + (1 − θ)i∗

)]
Obviously, V(s, i, w) ≤ 0. we conclude that E∗ is globally asymptotically stable.

7. Hopf Bifurcation Analysis

Theorem 8. If the critical value for the bifurcation parameter θ is exceeded, the model (2) ex-
periences Hopf bifurcation. The existence of the following Hopf bifurcation criteria at θ = θ∗,
1. N1(θ

∗)N(θ∗)− N3(θ
∗) = 0. 2. d

dθ (Re(λ(θ)))|θ=θ∗ ̸= 0 Where, λ is the characteristic of the
equation’s naught in reference to its underlying state of equilibrium position.

Proof. For θ = θ∗, (3) is in the form of an attribute equation.

(λ2(θ∗) + N2(θ
∗))(λ(θ∗) + N1(θ

∗)) = 0. (4)

=⇒ ±i
√

N2(θ∗) and −N1(θ
∗) are the zero of the above equation. The following

transversality requirement must be satisfied in order for us to achieve the Hopf bifur-
cation at θ = θ∗. d

dθ∗ (Re(λ(θ∗)))| ̸= 0. The general solutions of the previously men-
tioned equations for all θ. (4) λ1 = r(θ)+ is(θ), λ2 = r(θ)- is(θ), λ3 = −N1(θ). We have,

d
dθ∗ (Re(λ(θ∗)))| ̸= 0. Let λ1 = r(θ) + is(θ) in the (4), we get A(θ) + iB(θ) = 0. Where,
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A(θ) = r3(θ) + r2(θ)N1(θ)− 3r(θ)s2(θ)− s2(θ)N1(θ) + N2(θ)r(θ) + N1(θ)N2(θ),
B(θ) = V2(θ)s(θ) + 2r(θ)s(θ)N1(θ) + 3r2(θ)N(θ) + s3(θ).

dA
dθ

= χ1(θ)r
′
(θ)− χ2(θ)s

′
(θ) + χ3(θ) = 0, (5)

dB
dθ

= χ2(θ)r
′
(θ) + χ1(θ)s

′
(θ) + χ4(θ) = 0. (6)

where, χ1 = 3r2(θ) + 2r(θ)N1(θ) − 3s2(θ) + N2(θ), χ2 = 6r(θ)s(θ) + 2s(θ)N1(θ),
χ3 = r2(θ)N

′
1(θ) + s2(θ)N

′
1(θ) + N

′
2(θ)r(θ), χ4 = N

′
2(θ)s(θ) + 2r(θ)s(θ)N

′
1(θ).

Multiplying (5) by χ1(θ) and (6) by χ2(θ), respectively,

r(θ)
′
= −χ1(θ)χ3(θ) + χ2(θ)χ4(θ)

χ1
2(θ) + χ22(θ)

. (7)

Substituting r(θ) = 0 and s(θ) =
√

N2(θ) at θ = θ∗ on χ1(θ), χ2(θ), χ3(θ), and χ4(θ), we
obtain χ1(θ

∗) = −2N2(h∗2), χ2(θ
∗) = 2N1(θ

∗)
√

N2(θ∗), χ3(θ
∗) = N

′
3(θ

∗)− N2(l∗)N
′
1(θ

∗),

χ4(θ
∗) = N

′
2(θ

∗)
√

N2θ∗. Equation (7) implies r
′
(θ∗) =

N
′
3(θ

∗)−(N1(θ
∗N2(θ

∗)))
2(N2(θ∗)+N2

1 (θ
∗))

, if N
′
3(θ

∗) −

(N1(l]θ∗)N2(θ
∗))

′ ̸= 0 it suggests that d
dθ∗ (Re(λ(θ∗)))| ̸= 0, and λ3(θ

∗) = −N1(θ
∗) ̸= 0.

Therefore, the conditions N
′
3(θ

∗) − (N1(θ
∗)N2(θ

∗))
′ ̸= 0 ensure that the transversality

requirement holds, as a result, the model (2) has entered the Hopf bifurcation at θ = θ∗.

8. Numerical Simulations

In this section, we perform some numerical simulations on the system (2) in order to
verify our theoretical findings. In this study, the susceptible prey-predator rate (ω) and prey
refuge (θ) will be taken as important control parameters. Through the use of the MATLAB
software, each of us performed various mathematical simulations where the particular
parameter values are r = 0.5, β = 0.2, d = 0.1, c = 0.5, γ = 0.1, h2 = 0.2, ϑ = 0.3, µ = 0.2,
φ = 0.12, h1 = 0.01, γ = 0.1, ω = variable, θ = variable [8].

8.1. Effect of Varying the Susceptible Prey Predator Rate ω

We should adjust the database variable Table 2 as θ = 0.2. For the given limitation
value, E∗ is stable at positive equilibrium point ω ≥ 0.3, as shown in Figures 1 and 2.

Table 2. The value of Parameter equation is (2).

Parameters Numeric value

r 0.5
β 0.2
d 0.1
c 0.5
γ 0.1
h2 0.2
ϑ 0.3
µ 0.2
φ 0.12
h1 0.01
γ 0.1
ω variable
θ variable
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Figure 1. At ω = 0.35 the time series and phase portrait of they system (2) at E∗.

Figure 2. The compactness of susceptible prey, infected prey and predator population for the
limitation values in Table 2 except θ = 0.2 and ω = 0.30, 0.33 and 0.36.

8.2. Effect of Varying the Prey Refuge θ

We should adjust the database variable 2 as ω = 0.3. For the given limitation value,
E∗ is stable at positive equilibrium point for θ ≥ 0.2, as shown in Figure 3.

Figure 3. The compactness of susceptible prey, infected prey and predator population for the
limitation values in Table 2 except for ω = 0.3 and θ = 0.2, 0.25 and 0.3.

9. Conclusions

In this study, we investigated the three-species food web eco-epidemiological model
with prey refuge in an infected prey population and harvesting effect in both prey popu-
lations. Some mathematical results like positive invariance, positivity and boundedness
were analysed in Equation (2). The local stability is assigned to each biologically feasible
equilibrium point of the system. Global stability was analysed by a suitable Lyapunov
function. Hopf bifurcation was analysed by bifurcation parameter (θ). Also, prey refuge
(θ) and susceptible prey-predator rate (ω) was used as a control parameter. According to
the analytical and numerical findings, the prey refuge and susceptible prey-predator rate
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has a major impact on the population. If we increase the susceptible prey predator rate and
prey refuge in predator populations, the system loses its stability. This study shows the
complex behavior of the proposed model.
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