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Abstract: The chest X-ray (CXR) is a commonly used diagnostic imaging test that requires significant
expertise and careful observation due to the complex nature of the pathology and fine texture
of lung lesions. Despite the long-term clinical training and professional guidance provided to
radiologists, there is still the possibility of errors in diagnosis. Therefore, we have developed a novel
approach using a convolutional neural network (CNN) model to detect the abnormalities of CXR
images. The model was optimized using algorithms such as Adam and RMSprop. Also, several
hyperparameters were optimized, including the pooling layer, convolutional layer, dropout layer,
target size, and epochs. Hyperparameter optimization aims to improve the model’s accuracy by
testing various combinations of hyperparameter values and optimization algorithms. To evaluate
the model’s performance, we used scenario modeling to create 32 models and tested them using a
confusion matrix. The results indicated that the best accuracy achieved by the model was 97.94%.
This accuracy was based on training and test data using 4538 CXR images. The findings suggest
that hyperparameter optimization can improve the CNN model’s accuracy in accurately identifying
CXR abnormalities. Therefore, this study has important implications for improving the accuracy and
reliability of CXR image interpretation, which could ultimately benefit patients by improving the
detection and treatment of lung diseases. Acknowledging dataset constraints, we address future
steps for model improvement.

Keywords: CNN; hyperparameter optimization; CXR diagnostic; lung disease detection

1. Introduction

Lung disease accounts for approximately 4 million annual global deaths, including a
significant proportion among children under 5 [1,2]. Chest X-ray (CXR) images are pivotal
in diagnosing heart and lung conditions [3,4], yet their interpretation demands specialized
skills due to intricate pathology and subtle textural variations [5]. Even experts can face
challenges, leading to potential misdiagnoses [6,7].

Convolutional neural networks (CNNs) excel in image analysis [8], particularly in med-
ical applications like CXR abnormality detection [9,10]. However, CNN performance relies
heavily on hyperparameters [11] like learning rate, batch size, optimizer, and epochs [12].
Hyperparameter optimization (HPO) seeks optimal configurations [13], enhancing CNN
performance in diverse domains [14]. Although the impact of HPO on CXR abnormality
detection CNNs is currently under research [15–17], this study proposes a CNN-based CXR
abnormality detection model and evaluates the impact of HPO.
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This study conducts 32 experiments using a publicly available dataset to assess CNN
model performance with different hyperparameters and optimization algorithms. The
results emphasize the significant improvement achieved through hyperparameter op-
timization (HPO) in CXR abnormality detection. Our approach focuses on optimizing
hyperparameters such as learning rates, batch sizes, and architectural choices to enhance
accuracy in lung disease detection from CXR images. We introduce innovative strategies
for hyperparameter tuning, aiming to maximize CNN performance in CXR analysis.

This article unfolds in four sections. After this introductory overview, the subsequent
section details materials and methods, focusing on CNN implementation and hyperparam-
eter optimization. Sections 3 and 4 present the implementation, results, and discussion,
followed by conclusions in Section 5 .

2. Materials and Methods

This section describes the process flow and methods used in this study based on
the secondary dataset. To improve performance, this study uses the CNN method with
hyperparameter optimizer and optimization algorithms. The process flow of this research
is detailed in Figure 1.

Figure 1. (a) Sample CXR images depicting (i) normal and (ii) abnormal conditions, serving as the
dataset for (b) the flowchart outlining the sequence of steps in CXR image abnormality detection.
The process begins with image preprocessing, followed by processing using a Convolutional Neural
Network (CNN) approach to accurately identify abnormalities in chest radiographs of CXR image
abnormality detection.

2.1. Dataset

This study uses a secondary dataset from Kaggle.com (accessed on 1 January 2023)
as a benchmark dataset. The dataset contains 4578 CXR images divided into 2 classes,
normal and abnormal (Figure 1a), both with the same amount of data. Pulmonologists
and radiology specialists from Lubuksikaping Hospital, Pasaman Regency, West Sumatra,
Indonesia, have validated the dataset. This validation aims to strengthen data quality in
processing CXR image abnormality detection. The following will add datasets [10,18] for
evaluation.

2.2. Identifying Lung Abnormalities

Lung abnormalities, from infections to structural issues, are detected using specialized
imaging tests like chest X-rays and CT scans [19]. Our CNN approach uses annotated
thorax images to identify conditions like pneumonia, tuberculosis, and lung cancer, with

Kaggle.com
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adaptation during training to improve accuracy [20]. However, final diagnoses are made by
healthcare experts, with our study being aimed at enhancing model performance through
hyperparameter combinations, data augmentation, and CNN testing.

2.3. Convolutional Neural Networks (CNNs)

CNNs, inspired by the visual cortex’s functioning, excel in image recognition, classi-
fication, and segmentation [21]. Comprising multiple layers, CNNs automatically learn
features, as depicted in Figure 2. The initial layer, convolutional, employs filters to de-
tect features, followed by nonlinear activation, e.g., ReLU, and downsampling through
pooling (Figure 2a). Convolution and pooling cycles refine higher-level features. Fully
connected final layers handle classification/regression. Backpropagation trains CNNs, with
enhancements like residuals, normalization, and dropout elevating their performance.

(a) (b)

Figure 2. (a) CNN Architecture for CXR image classification and (b) the detailed model in Python.

Convolution, foundational in CNNs, extracts input data features through kernel
sliding [22]. The dot product of the kernel and input at each position yields an output value,
forming the feature map, as seen in Figure 2b. The output size hinges on input, kernel,
stride, and padding [23]. The output feature map size formula is expressed as Equation (1).

output_size = (input_size − kernel_size + 2 ∗ padding)/stride + 1 (1)

Intensive convolution computation prompts hardware utilization via GPUs or TPUs.
Pruning and quantization cut parameters, heightening network efficiency without ham-
pering accuracy. Our research differs through hyperparameter optimization, enhancing
model accuracy for precise CXR image interpretation, benefiting healthcare professionals
and patients.

2.4. Hyperparameter Combination Scenario Design and Optimization Algorithms

This study focuses on refining the accuracy of identifying abnormal chest X-ray (CXR)
images through strategic hyperparameter tuning and optimization. Max Pooling (MP)
in the Pooling Layer (PL), a swift-converging CNN technique [24], enhances translation-
invariance by capturing local maxima [25,26]. We apply Adam and RMSprop optimization
algorithms. Adam integrates AdaGrad and RMSprop properties [27]. This combination
makes it particularly proficient at dynamically adjusting learning rates to suit intricate
neural networks and large-scale datasets. RMSprop utilizes averaged gradients to adjust
learning rates and mitigate gradient issues.

Both the Adam and RMSprop optimization algorithms play a pivotal role in training
neural networks, with adjustable hyperparameters including the learning rate, momentum,
and decay rate [28]. The learning rate guides training updates, while momentum aids in
mitigating oscillations. Optimal configurations and algorithm choices have a significant
impact on neural network performance [29], highlighting the importance of well-designed
hyperparameters and appropriate algorithms for accurate and efficient machine learning.
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3. Results
3.1. CXR Image Processing

In image processing, techniques such as augmentation, fill mode, and rescaling play a
vital role in enhancing the quality and quantity of training data, thereby improving the ac-
curacy of CNNs. Data augmentation encompasses operations like rotation (with a range of
5 degrees), width shifting (range of 10%), height shifting (range of 5%), horizontal flipping,
shearing (range of 10%), and zooming (range of 15%). An 80:20 dataset split was employed
for training and testing. The fill mode operation addresses missing pixel values by using
the reflect method, replacing them with their nearest reflected counterparts. Furthermore,
min–max normalization rescales pixel values by dividing them by 255, standardizing them
within the range of 0 to 1. These preprocessing techniques ensure consistent image dimen-
sions and pixel value ranges, contributing to the heightened accuracy and efficiency of the
model [18,30].

3.2. CXR-Classification-Based CNN

A comprehensive CNN model training and testing process was executed to optimize
CXR image classification. This involved strategic hyperparameter tuning and optimization
algorithms. The CNN model underwent 32 experiments, testing various hyperparameter
combinations and optimization algorithms (Table 1).

Table 1. The results of testing the CNN model with hyperparameter optimization.

Hyperparameter 4 Convolutional Layer 5 Convolutional Layer

Target Size (Pixel) 64× 64 180 × 180 64 × 64 180 × 180

Epoch 50 120 50 120 50 120 50 120

Maxpooling
(Accuracy)

Adam 95.18% 93.69% 95.91% 93.70% 94.97% 96.81% 95.89% 97.09%
RMSprop 91.99% 95.11% 88.17% 95.96% 93.96% 95.25% 96.10% 94.05%

Averagepooling
(Accuracy)

Adam 96.52% 97.45% 96.38% 97.94% 95.75% 96.88% 96.10% 97.52%
RMSprop 95.60% 95.04% 94.97% 95.11% 95.75% 96.17% 96.16% 95.96%

Table 1 highlights the superior performance of the Adam optimizer. It yielded an
accuracy of 97.94%, reflecting optimal quality with the highest accuracy and lowest loss
(Figure 3a,b). This model was employed for detecting CXR abnormalities. The visualization
depicts stable curves indicating quality, free from overfitting or underfitting concerns.

(a) (b) (c)

Figure 3. Curves of (a) accuracy and (b) loss in the optimal trial training and validation process, and
(c) resulting in ROC results in CXR abnormality detection.

The findings indicate Adam’s superiority over RMSprop in CXR abnormality detec-
tion, considering dataset specifics, architecture, and hyperparameters. Adam’s adaptive
learning rate accelerates convergence, particularly in intricate datasets. Its momentum-
based updates aid in escaping local minima, crucial for sensitive tasks like chest X-ray
abnormality detection. L2 regularization curbs overfitting and enhances generalization.
However, achieving success relies on the selection of hyperparameters and optimization
techniques.
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Figure 3a,b, portray epoch-wise accuracy and loss. The blue accuracy curve signifies
training, with higher values indicating better quality. The red curve reflects validation;
proximity and stable value shifts denote optimal quality without overfitting.

An efficient CNN model exhibits low loss and high accuracy, evident in convergence
with loss below 10% for training and validation. An accuracy of 97.94% with minimal
divergence underscores model optimality.

4. Discussion

The selection of hyperparameters and optimizers can result in achieving the optimal
performance of machine learning models. In the case of CNNs, hyperparameters such
as the number of convolutional layers, the size of the target image, the type of pooling,
and the number of epochs can significantly impact the accuracy of the model. This study
conducted 32 experiments with five parameters, each with two possible values, to find the
optimal combination of hyperparameters and optimizers (32 combinations).

The results indicated that each hyperparameter and optimizer tested significantly
impacted the quality of the model produced. The most optimal combination was found
in the experiment, which used the Adam optimizer, average pooling, four convolutional
layers, a target size of 180 × 180 pixels, and 120 epochs. This combination achieved the
highest accuracy rate of 97.94%, a true positive rate of 97.03%, and a true negative rate of
98.87%. Therefore, if we aim to depict these results through an ROC curve based on this
model, it is presented in Figure 3c. The lowest accuracy was achieved in the experiment,
which used the RMSprop optimizer, Max Pooling, four convolutional layers, a target size of
180 × 180 pixels, and 50 epochs. Comparing our method to others (Table 2), our approach
outperforms existing ones, achieving an accuracy of 97.94%, demonstrating its potential for
more accurate chest X-ray classification.

Table 2. Comparison of proposed method with others for CXR classification.

Performance Proposed QCNN
[31]

CNN-b0
[32]

ConvNets
[33]

CNN Dropout
[34]

CNN-b1
[35]

CNN-SVM
[35]

CNN-KNN
[35]

Accuracy 97.94% 93.75% 94.81% 93% 97.37% 94.55% 97.32% 96.55%

5. Conclusions

This paper presents a CNN-based approach for lung disease detection in CXR images,
with a specific focus on hyperparameter optimization. While our core model architec-
ture leverages existing CNN techniques, our novel strategies for hyperparameter tuning
result in significantly improved accuracy. Our research contributes to the field by push-
ing the boundaries of CNN performance in CXR analysis. In future work, we plan to
further evaluate the robustness of our model by incorporating additional data sources
for evaluation.
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