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Abstract: The Internet of Things (IoT) has revolutionized technologies in society, including in house-
holds, offices, factories, and health centers. Among these, the Healthcare Internet of Things (HIoT)
significantly transforms medical assistance for patients. By using wearable devices with remote
network connections, caregivers monitor patients’ physiological data to gain valuable insights into
their health conditions. Despite the many benefits of the HIoT, several security vulnerabilities still
exist. Hackers can exploit the internet connection to steal or modify credential information regarding
patients, violating the integrity and confidentiality of the security policy. Moreover, they can launch
cyberattacks on hospitals or critical life-support systems, further endangering patients’ lives. Conse-
quently, it is crucial to implement robust cybersecurity measures to enhance the security of healthcare
services. Therefore, we proposed an anomaly detection method based on network traffic for the HIoT,
adopting Markov models. Owing to their simplicity, interpretability, and well-developed theory, the
Markov models have been applied to network traffic prediction and modeling, serving as a viable
approach to cater to our needs. We evaluated the proposed method using the public dataset ToN_IoT
and analyzed the results.

Keywords: healthcare internet of things; anomaly detection; network traffic; Markov models

1. Introduction

The Healthcare Internet of Things (HIoT) redefines health services for patients. Due
to the exponential growth in the network traffic generated by all connected devices in
the HIoT, monitoring the network’s performance and overcoming its inefficiencies pose a
challenge. Network traffic prediction is one of the subfields of Network Traffic Monitoring
and Analysis (NTMA) [1], which focuses on analyzing past characteristics of network
traffic to predict future trends. This serves as a solution to be addressed, particularly in
anomaly detection. Anomaly detection is crucial to cybersecurity and is further integrated
into an intrusion detection system (IDS). An anomaly-based IDS, in comparison to its
signature-based counterpart, characterizes the normal behavior of a system to differentiate
attack traffic, whereas its counterpart searches for features that directly match the attack
traffic from its pre-built database. Before the advent of the HIoT and the proliferation of
IoT applications, most of the prediction and anomaly detection methods only considered
univariate time series. However, network traffic consists of different attributes and statisti-
cal contexts, such as packet counts, interarrival time, protocol type, and connection status.
Focusing solely on univariate time series may overlook the underlying correlation between
the different attributes [2]. Therefore, in this study, we adopted a multivariate analysis to
detect anomalies in network traffic in the HIoT environment.
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2. Related Works

Anomaly detection methods have been a subject of ongoing research in many fields
of study. Recent studies mostly focus on various machine learning and deep learning
algorithms for anomaly detection. Wu et al. [3] applied the graph neural network (GNN)
for anomaly detection in Industrial Internet of Things (IIoT) scenarios, specifically to the
studies on smart factories, smart transportation, and smart energy. They provided a com-
prehensive investigation of different types of anomalies such as point anomalies, contextual
anomalies, and collective anomalies. Chen et al. [4] proposed a transformer-based frame-
work, called GTA, to learn graph structures for multivariate time series’ anomaly detection
in IoT sensor data. Park et al. [5] addressed the issue of data imbalance in an AI-based
network intrusion detection system (NIDS) using a generative adversarial network (GAN)
by generating synthetic data for minor attacks, along with an autoencoder-driven model
for detection. Furthermore, Liu et al. [6] combined an attention-mechanism-based convolu-
tional neural network long short-term memory (AMCNN-LSTM) model with federated
learning to detect edge device failures. Qi et al. [7] introduced a novel approach called
MDS_AD, which employed locality-sensitive hashing (LSH), isolation forest, and principal
component analysis (PCA) to detect point and group anomalies considering multi-aspect
data. Regarding studies of Markov models and network traffic analysis, Aceto et al. [8] ap-
plied high-order Markov chains and hidden Markov models (HMM) to predict mobile-app
traffic. Liu et al. [9] introduced tensor operations to a multivariate, multi-order Markov
chain for network traffic’s multi-modal prediction.

3. Methodology

The multivariate high-order Markov chain with Hellinger distance (MHMC-HD) was
proposed for detecting anomalies in network traffic for HIoT scenarios in this study.

3.1. Problem Formulation

Let X = {X1, X2, X3, . . . , Xt−1, Xt, Xt+1, . . .} be a set of consecutive random vari-
ables that describe the state of each network traffic flow at time t. The finite state set is
denoted as

S ≡ {1, 2, 3, . . . , I} (1)

where I represents the total number of states. Similar to network traffic prediction, our
objective is to obtain the transition probability of the state at the next time step, given the
states at k’s preceding ones.

3.2. MHMC

In a classical first-order Markov chain, the current state is determined solely by the
previous state.

P(Xt+1 = j|Xt = i, Xt−1 = it−1, . . . X0 = i0)
= P(Xt+1 = j|Xt = i)
= pi,j

(2)

where state j, i, i0, . . . it−1 ∈ S. The assumption of temporal homogeneity is made, meaning
that the transition probability does not depend on time t. Hence, the transition probability
matrix can be expressed as follows:

pi,j = P(Xt+1 = j|Xt = i
)

(3)

P′ =
(

pi,j
)

(4)

where P ∈ RI×I , ∑I
i=0 pi,j = 1.
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Compared to the classical Markov chain, a k-order Markov chain not only depends on
the previous state but also takes into consideration the k’s preceding states.

P(Xt+1 = j|Xt = i, Xt−1 = it−1, . . . X0 = i0)
= P(Xt+1 = j|Xt = i, Xt−1 = it−1, . . . , Xt−k+1 = it−k+1)
= pit−k+1,...,it−1,i,j

(5)

where it−k+1, . . . , it−1, i, j ∈ S. Furthermore, for a network traffic flow, multiple attributes
can be obtained, such as interarrival time, packet length, and others. If we apply separate
univariate Markov chains to different attributes, the hidden correlation between these
attributes may be neglected. Therefore, it is important to retain the underlying correlation
between the different variables. In an m-variate k-order Markov chain, the state space can
be defined as follows:

S′ ≡ {(1, 1, . . . , 1), (1, 1, . . . , 1, 2), . . . , (I1, I2 . . . , Im)}. (6)

Thus, the transition probability can be represented as follows:

pit+1,1,it+1,2,...,it+1,m ,it,1,it,2,...,it,m ,...,it−k+1,1,it−k+1,2,...,it−k+1,m

= P(Xt+1,1, Xt+1,2, . . . , Xt+1,m = it+1,1, it+1,2, . . . , it+1,m|
Xt,1, Xt,2, . . . , Xt,m = it,1, it,2, . . . , it,m, . . . , Xt−k+1,1, Xt−k+1,2,

. . . , Xt−k+1,m = it−k+1,1, it−k+1,2, . . . , it−k+1,m)

(7)

where

it+1,1, it+1,2, . . . , it+1,m, it,1, it,2, . . . , it,m, . . . , it−k+1,1, it−k+1,2, . . . , it−k+1,m ∈ S′

and the transition matrix can then be converted to a tensor

P′′ ∈ RI1,I2 ...,Im×...×I1,I2 ...Im .

3.3. Maximum Likelihood Estimation (MLE)

After acquiring the network traffic flows, the unknown transition probability tensor
is estimated based on these observations. The MLE is a common technique used for this
purpose. For a classical first-order Markov chain, the transition probability matrix can be
constructed as follows:

p̂i,j =
nij

∑k nik
(8)

nij =
Nt

∑
t=0

1{Xt=i}1{Xt+1=j} (9)

where p̂i,j and nij are the estimated transition probability and the count of transitions from
state i to state j, respectively. Nt denotes the total number of time steps in the training data,
and 1{·} is an indicator function.

3.4. MHMC with Hellinger Distance (MHMC-HD)

Initially, in the approach of this study, we applied the Hellinger distance to determine
whether testing data samples exhibited a similar underlying probability distribution to the
training data. The Hellinger distance is a measure to quantify the dissimilarity between two
discrete probability distributions. According to [8], we considered two hypotheses,H0 and
H1, to investigate whether the two datasets were represented by the same Markov model
or by different ones. For a first-order Markov chain, the two probability distributions were
described through S× S matrices Πx and Πy, where each Π was one-to-one mapped to the
corresponding transition matrix, with S denoting the finite state set.
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Similar to estimating unknown transition matrices, the matrix Π was obtained
using MLE.

π̂ =
nij

n
(10)

Subsequently, we applied the Hellinger distance to measure the dissimilarity between
the two matrices Πx and Πy.

H
(
Π̂x, Π̂y) = 1√

2

√√√√ S

∑
i=1

S

∑
j=1

(√
π̂x

i,j −
√

π̂
y
i,j

)2
(11)

Given a threshold γ, if H
(
Π̂x, Π̂y) > γ, the two datasets belonged to different proba-

bility distributions (H0), whereas H
(
Π̂x, Π̂y) < γ suggested that the two datasets used the

same Markov model (H1). Following that, we applied MHMC to assess the probability of
the generation of each testing data considering k.

4. Experiment and Result
4.1. Network Traffic Data

To evaluate our approach for anomaly detection on HIoT network traffic, we used the
ToN_IoT datasets. The datasets comprised IoT/IIoT telemetry data from sensors, operating
system data from Windows and Linux systems, as well as network traffic data collected
during normal operations and under various attack interferences [10–12]. The network
traffic datasets were derived from pcap and log files with Zeek logs. Among the various
attributes in the dataset, we specifically selected source payload (src_bytes), destination
payload (dest_bytes), and connection state (conn_state) to evaluate the proposed MHMC-
HD approach. The testing data included different types of attack techniques, including
DoS, injecting, ransomware, password attacks, and more [13–15].

4.2. Performance Metrics

We adopted the following common performance metrics to evaluate the results using
the confusion matrix [16]. The confusion matrix provided an overview of the outcomes of
predictive analytics and classification studies, presenting four different cases. Each case
represented the number of testing data samples falling into one of the following categories
as shown in Table 1: True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN).

Table 1. Confusion Matrix.

Confusion Matrix
Actual Condition

Positive Negative

Predicted Condition
Positive TP FP

Negative FN TN

• Precision: The number of correctly detected anomaly samples over the total number
of samples predicted as anomalies.

Precision =
TP

TP + FP
(12)

• Recall: The number of correctly detected anomaly samples over the total number of
actual anomaly samples.

Recall =
TP

TP + FN
(13)
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• F1-score: The harmonic mean of precision and recall providing a balance measure for
the model’s performance.

F1 = 2
(Precision)(Recall)
Precision + Recall

(14)

• True Negative Rate (TNR): A metric for evaluating the false alarm rate. The number
of correctly predicted normal traffic samples over the total number of normal traffic
samples, as follows:

TNR =
TN

TN + FP
. (15)

When evaluating the testing dataset consisting of 80,000 flows, we implemented the
MHMC-HD with a threshold of γ = 0.5 for the Hellinger distance measure and an order of
k = 4 for the MHMC. Next, we compared the MHMC-HD with three other approaches,
including a four-order MHMC, the Hellinger distance measure without MHMC, and an
ML-based long short-term memory (LSTM) with an autoencoder (AE). The results are
presented in Table 2 and Figure 1. It was found that the MHMC_HD performed the best
in terms of precision, F1, and TNR, while the LSTM-AE achieved the highest score in the
recall metric.

Table 2. Comparison of the results with different methods.

Methods Precision Recall F1 TNR

Four-order MHMC 0.9815 0.9951 0.9882 0.9436
Hellinger Distance 0.8894 0.9875 0.9359 0.6316

LSTM + AE 0.8104 1 0.8995 0.3
MHMC-HD 0.9940 0.9908 0.9924 0.9821
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To investigate the influence of a different order (k) on the MHMC-HD in terms of
its performance in anomaly detection, we conducted experiments from order one to ten.
The results are presented in Table 3 and Figure 2. The recall and F1 scores were improved
at a higher order but the TNR metric dropped as the order increased. In Figure 3, a
significant improvement of the TNR is shown, after integrating the Hellinger distance
measure into the MHMC. This improvement indicated a reduction in the false alarm
rate when implementing anomaly detection in IoT network traffic. Overall, the results
suggested that the enhancement of the recall and F1 scores through the implementation of
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a higher order in the MHMC-HD undermined the TNR metric. Moreover, the integration
of the Hellinger distance effectively reduced the false alarm rate in anomaly detection in
IoT traffic.

Table 3. Evaluation of the MHMC-HD with different orders of k.

Order k Precision Recall F1 TNR

1 0.9979 0.5164 0.6806 0.9968
2 0.9968 0.9387 0.9669 0.9910
3 0.9952 0.9816 0.9884 0.9858
4 0.9940 0.9908 0.9924 0.9821
5 0.9933 0.9950 0.9942 0.9799
6 0.9929 0.9968 0.9949 0.9786
7 0.9926 0.9979 0.9952 0.9775
8 0.9923 0.9993 0.9958 0.9766
9 0.9919 0.9996 0.9957 0.9756
10 0.9917 0.9997 0.9957 0.9748
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5. Conclusions

We developed the MHMC-HD method to detect anomalies specifically for attacking
traffic flows on the IoT’s network traffic. The impact of a higher order on the performance
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of the MHMC-HD was investigated. The results showed a considerable improvement in
anomaly detection. The results also demonstrated that integrating the Hellinger distance
into the MHMC produced a low false alarm rate, thereby enhancing the reliability of
anomaly detection in HIoT network traffic analysis.
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