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Abstract: The Galileo High-Accuracy Service (HAS) was declared operational (initial service) in
January 2023 after an intense testing phase aimed at assessing its service performance through
the transmission of live HAS corrections. The HAS performance at high latitudes is evaluated
by analyzing data collected at the Polish Polar Station located in Hornsund, in the Norwegian
Svalbard archipelago. At such a location, the reception conditions can be affected by poor satellite
geometries and ionospheric scintillation may degrade the signal quality. In this respect, data affected
by scintillation events were identified and used for the performance analysis. The assessment is
carried out by comparing the HAS corrections with the International GNSS Service (IGS) precise
products. Moreover, the retrieved HAS corrections are used to assess the Precise Point Positioning
(PPP) performance.

Keywords: Galileo High-Accuracy Service; HAS; Precise Point Positioning; PPP; high latitudes;
ionospheric scintillation

1. Introduction

The Galileo High-Accuracy Service (HAS) broadcasts Precise Point Positioning (PPP)
corrections targeting the horizontal and vertical positioning accuracy, after convergence,
below twenty and forty centimeters, respectively. In January 2023, the HAS initial service
was declared operational after an intense testing phase aimed at assessing the service
performance through the transmission of live corrections. During its testing phase and
since the initial service declaration, HAS has attracted significant research interest given
the potential offered by decimeter-level position accuracies.

In this respect, intensive tests have been conducted to assess the service’s performance.
For instance, an analysis was conducted in [1] to assess the accuracy achievable with HAS:
two static receivers placed in Brussels, Belgium, and in Tres Cantos, Spain, were considered.
For both receivers, it was shown that the HAS accuracy targets can already be achieved
with the current service level, where ionospheric corrections are not broadcast. Similar
results were obtained by [2], which considered a set of 33 International GNSS Service (IGS)
stations and used their data to assess the HAS performance. Also, in this case, horizontal
accuracies within the 20 cm target were observed. Similarly, the vertical accuracy achieved
was within the 40 cm target.

The focus of the mentioned analyses is either limited to central Europe or aggregated at
the level of several reference stations. In this work, we assess the HAS performance at high
latitudes by exploiting data collected by the Polish Polar Station located in Hornsund, in
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the Norwegian Svalbard archipelago at a latitude around 77◦. The station features a multi-
constellation Septentrio PolaRx5S receiver connected to a choke-ring antenna. The binary
files provided by the receiver are processed using an in-house developed decoder, denoted
as Galileo HAS Parser (GHASP) [3,4], which is able to retrieve HAS corrections from the
Galileo E6-B signal pages collected by the Septentrio PolaRx5S receiver. The corrections
were then applied to the broadcast orbits and clocks to obtain precise satellite positions
and clock offsets. Finally, the obtained precise orbits and clocks, and the decoded biases,
were input to the Oregon State University Precise Point Positioning (ORPPP) software v 1.0,
which was used to estimate the final position solution.

The assessment of the HAS performance at high latitudes is of particular interest
because reception conditions can be affected by poor satellite geometries [5]. Moreover, at
high latitudes, ionospheric scintillation may occur, degrading the signal quality.

Ionospheric scintillations are fast and random fluctuations in the signal amplitude
and/or phase produced by strong ionospheric electron gradients [6]. This phenomenon is
more frequent and severe at high latitudes and in equatorial areas [7].

However, since the ionospheric morphology is different in these two regions, the
phenomenon presents different characteristics in these geographical areas. Specifically, in
the equatorial regions, scintillation usually is characterized by correlated amplitude and
phase signal variations, while at high latitudes, scintillation is mainly characterized by
strong phase fluctuations and lower amplitude variations. Strong phase signal variations
induced by scintillation can be particularly challenging for carrier-phase-based position
techniques, such as PPP algorithms, which are exploited by the typical HAS users. In order
to assess the impact of ionospheric scintillation on the HAS performance, data collected
during a day affected by strong phase scintillation are considered. The HAS performance
assessment is carried out by (1) comparing the quality of the HAS-corrected orbits and
clocks with the precise products provided by the IGS (https://igs.org/products/ accessed
on 31 January 2023), and (2) analyzing the HAS PPP solution in the position domain.

The remainder of this paper is organized as follows: Section 2 describes the methodol-
ogy used to decode and apply the HAS corrections and obtain the final precise position.
Section 3 illustrates the experimental set-up used to collect the data analyzed in this paper.
Section 4 provides the assessment results through the statistics of the HAS orbit/clock and
position errors. Finally, Section 5 draws some conclusions.

2. HAS Correction Decoding and Application

HAS corrections are broadcast through the Galileo E6-B Signal-in-Space (SiS) and
disseminated using a high-parity encoding and dissemination scheme based on Reed–
Solomon codes [8]. Several E6-B pages need to be combined in order to extract the actual
HAS corrections. This operation is performed using the GHASP software v 1.0 [3,4] de-
veloped by the authors. GHASP supports several input formats and is able to convert
messages collected using E6-B capable receivers into actual corrections. The data extracted
using the GHASP software includes orbit and clock corrections and code and carrier biases.
In the following, the quality of the orbit and clock corrections is analyzed by comparing
them with the precise products obtained from the IGS. This process is schematically rep-
resented in Figure 1, which shows the different processing steps adopted for the analysis.
HAS corrections were applied to the broadcast orbits and clocks to obtain precise satellite
orbits and clocks. The latter were then formatted as standard Special Product 3 (.sp3) orbit
and clock (.clk) files [9,10] using an in-house developed software so that they could be
easily processed. The extracted HAS corrections in the standard orbit and clock file formats
were tested using a PPP algorithm.

For this experiment, the authors used the ORPPP software, developed by the coauthors
of this paper at the Oregon State University. The ORPPP software is capable of processing
multi-constellation, multi-frequency GNSS signals.

https://igs.org/products/
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Figure 1. Representation of the process adopted for decoding and applying HAS corrections.

The primary observables used by the ORPPP software are ionosphere-free linear
combinations, and the unknown parameters include the position vector, clock error, zenith
wet delay, float ambiguity parameter, differential code biases, and intersystem bias. Tidal
corrections (solid earth, ocean, pole tides), phase wind-up, and relativistic corrections are
applied. The unknown parameters are estimated using an adaptive robust Kalman filtering
method introduced by [11].

3. Experimental Set-Up

The data under analysis were collected by the WUTH reference station located in the
Polish Polar Station of Hornsund in Spitsbergen/Norway (77.00◦ N, 15.54◦ E) and included
in the IGS and the EUREF Permanent GNSS Network (EPN). Currently, this station is the
second northernmost location of the IGS network. The station is equipped with a POLARX5S
receiver connected to a SEPCHOKE_B3E6–SPKE choke-ring antenna from Septentrio, Leuven,
Belgium. A view of the antenna used for the data collection is provided in Figure 2. The
receiver is an Ionospheric Monitoring Scintillation Receiver (ISMR) embedded with an ultra-
low phase noise oscillator, which allows the identification of the phase fluctuations due
to ionospheric scintillation minimizing the clock noise contribution. The ISMR provides
scintillation indices, such as S4 and Phi60, which are used to identify the level of amplitude
and phase scintillation [12]. Moreover, the receiver was set to record the E6-B navigation
message, which was exploited to retrieve the HAS corrections as described in Section 2.
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4. HAS Assessment Results

While several days of data were considered, the assessment presented in this paper fo-
cuses on the data collected from the WUTH station on the 4th of September 2022 (DOY 247).
In particular, the interval between 15:00 and 19:00 was analyzed, since it was characterized
by very intense ionospheric activity.

Moving at high latitudes, the maximum reachable satellite elevation decreases and
therefore the satellite visibility is reduced. Consequently, the occurrence of low-elevation
satellites and intense ionospheric activity can render the high-latitude region a very chal-
lenging environment for high-accuracy applications.

During the observation period, the maximum satellite elevation was around 60 degrees
for both the GPS and Galileo satellites, as shown in the skyplot provided in Figure 3. Despite
this fact, a good satellite geometry can be observed in Figure 4, where the Position Dilution
of Precision (PDOP), the Horizontal (HDOP) and Vertical (VDOP) are reported. The DOPs
are always below 2.5 for the GPS only, Galileo only and GPS + Galileo cases. This result
indicates good geometry conditions for the selected receiver location. In Figure 5, the
phase scintillation index provided by the ISMR during the time interval considered for the
analysis is also reported for all satellites in view. The Phi60 is an index used to quantify
the level of phase scintillation and is obtained by computing the standard deviation of the
detrended carrier phase, averaged over one minute of data [12]. The detrending operation
is performed to eliminate the low-frequency variations in the phase measurements due
to other noise sources, such as the receiver clock, multipath and the relative satellite user
motion. In this way, only high-frequency components caused by ionospheric scintillation
are retained.
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Slightly different Phi60 thresholds are used in the literature to classify different scin-
tillation levels. Adapting the values in [13,14], we classify the phase scintillation level as
follows: values of Phi60 above 0.25 and below 0.4 radians indicate the occurrence of weak
scintillation, values between 0.4 and 0.6 correspond to moderate (M) phase scintillation,
values between 0.6 and 0.8 radians are associated with strong (S) phase scintillation events,
while values above 0.8 radians indicate very strong (VS) scintillation. The different levels
of phase scintillation are indicated on top of Figure 5.

Around 15:20, very intense ionosphere activity occurs, leading to the occurrence of
very strong phase scintillation. Then, the activity decreases, but still some moderate/strong
ionospheric activity is present, with Phi60 achieving values above 0.5 radians.

4.1. Orbit and Clock Errors

The quality of the HAS orbits and clocks was assessed using the Center for Orbit
Determination in Europe (CODE) final products as reference. Details of the accuracy of
these final products can be found in [15]. Given that the CODE satellite orbits are referred
to the Centre of Mass (COM) while the HAS satellite orbits are referred to the Antenna
Phase Centre (APC), satellite Phase Centre Offsets (PCOs) were applied to align the two
products and allow a comparison. The PCOs were retrieved from the igs14.atx antenna
model [16].

Moreover, the HAS clock corrections are referred to the Ionosphere Free (IF) combina-
tion of L1C/A/L2P measurements for GPS and E1/E5b for Galileo, while CODE clocks
are referred to the IF combinations L1P/L2P and E1/E5a. Therefore, IGS satellite biases
were used to align the two products to the same reference IF measurement combination
and enable a fair comparison. After the alignment, the clock accuracy was evaluated by
computing the difference between the two products and removing the mean error per
constellation at each instant.

The Galileo and GPS 3D orbit errors are shown in Figures 6 and 7, respectively. The
errors for all visible satellites are provided jointly in the figures. After computing the root
mean squared (rms) 3D orbit error at each instant for all satellites, the 95th percentile values
were computed and are reported in Table 1 for the Galileo and GPS cases. Specifically,
the values are 10.5 and 11 cm for the Galileo and GPS constellations, respectively. These
values are comparable with the ones found in [2] for the data collected on the same day
but at a different geographical location. The clock errors are reported in Figures 8 and 9
for the Galileo and GPS constellations, respectively. In Table 1, the 95th percentile of the
rms clock errors, computed for all satellites at each instant, are also reported. For the GPS
case, this value was computed after removing satellite G02, which showed bigger error
values, also in agreement with the findings in [2]. Moreover, in Figure 8, it can be observed
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that a higher clock error was estimated for one Galileo satellite, with values around 0.6
m. For this satellite (E12), similar error values were obtained in [2]. Note that the results
were obtained during the HAS validation period, some months before the initial service
operation. The HAS product accuracy at the moment is higher and is expected to gradually
increase over time thanks to the algorithm tuning and the addition of stations.
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4.2. Position Domain Results

The PPP engine was set to process Galileo E1/E5b and GPS L1C/A/L2P measure-
ments. The processing started just before the occurrence of the strong phase scintillation
event identified by the peak in Phi60 reported in Figure 5 to stress the PPP performance.
The horizontal and vertical position errors are provided in the upper and bottom parts of
Figure 10. The PPP filter converges in 15 min, reaching a horizontal and vertical position
accuracy below 20 and 40 cm, respectively. No phase biases were used for the PPP process-
ing (they were not available at the time of data collection) and no ambiguity resolution was
performed to assist in reducing the convergence time. After convergence, the horizontal
and vertical accuracies were found to be below 20 and 40 cm, respectively. This can be
observed in Table 2, where the statistics (95th percentile and std) of the horizontal and
vertical errors (HE and VE) computed after convergence are reported and the target values
are indicated with red dashed lines. The solution remains below the target thresholds even
if the ionospheric activity persists until the end of the data collection, as shown in Figure 5.
For comparison purposes, in Figure 11, the HE and VE are reported for a period of quiet
ionospheric conditions recorded during the same day. The associated statistics are also
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reported in Table 2. In this case, the convergence is reached after 230 s. However, after
convergence, the positioning accuracy is comparable for the two cases.
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HE (p95/std) VE (p95/std) Conv Time

Scintillation period 12/1.2 cm 7.9/1.5 cm 900 s
Quiet ionospheric period 11.5/1.7 cm 15.7/1.9 cm 230 s
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5. Conclusions

At the beginning of 2023, the Galileo HAS was declared operational, providing free cor-
rections through the Galileo E6-B data component worldwide. In this paper, we showcased
the potential of HAS to achieve a high accuracy at high latitudes and under ionospheric
scintillation. For this purpose, we exploited the data collected at the Polish Polar station
located in Hornsund (Svalbard, Norway) at a 77◦ latitude during a day with very intense
ionospheric activity. Despite the harsh conditions, the HAS-based PPP solution achieved
horizontal and vertical accuracies, after convergence, below 20 and 40 cm, respectively.
The results were obtained by analyzing the data collected during the HAS testing phase.
Improved performance should be expected with the enhancement of the corrections trans-
mitted after the HAS declaration. As future work, it will be of interest to analyze more
data sets collected at the same station and affected by different ionospheric scintillation
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conditions. The analysis will be extended to an assessment under equatorial scintillation,
which is characterized by amplitude and phase scintillation.
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