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Abstract: Urban environments are characterized by a set of conditions underpinning degradation
Position, Navigation and Timing (PNT) signals, such as multipath and non-line of sight (NLOS) effects,
negatively affecting the position and the navigation integrity during the Uncrewed Aerial Vehicles
(UAVs) operations. Before the deployment of such uncrewed aerial platforms, a realistic simulation
set-up is required, which should facilitate the identification and mitigation of the performance
degradation that may appear during the actual mission. This paper presents the case study of the
development of a robust Artificial Intelligence (AI)-based multi-sensor fusion framework using
a federated architecture. The dataset for this development, comprising the outputs of a Global
Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU) and a monocular
camera is generated in a high-fidelity simulation framework. The simulation framework is built
around Spirent’s GSS7000 simulator, software tools from Spirent (SimGEN and SimSENSOR) and
OKTAL-SE (Sim3D), where the realism for the vision sensor data generation is provided by a
photorealistic environment generated using the AirSim software with the Unreal Engine aid. To
verify and validate the fusion framework a hardware in the loop (HIL) set-up has been implemented
using the Pixhawk controller. The results obtained demonstrate that the presented HIL set-up is
the essential component of a more robust navigation solution development framework, providing
resilience under conditions of GNSS outages.

Keywords: realistic simulation; sensor fusion; machine learning; navigation integrity

1. Introduction

The world of uncrewed and autonomous systems is quickly evolving in all sectors,
bringing a new set of challenges for platform positioning and navigation solutions from
both performance and certification points of view. Considering tighter requirements for
positioning accuracy and integrity from the emerging use cases, such as drone operations
in urban environments and BVLOS (beyond-visual line-of-sight conditions), extensive use
of AI in positioning and fusion engines, repeatable and verifiable testing, and validation of
the navigation systems gains significant importance.

As can be seen from [1,2], AI models can be used to increase the navigation robustness
of UAVs under multipath and NLOS conditions [3]. Moreover, given the complexity that
such navigation solutions must be performing in, a realistic yet repeatable development,
testing, and validation environment is required. Different realistic environments were
developed previously as can be seen in [4,5] with the aid of Unreal Engine, a photorealistic
simulation software, and AirSim (Aerial Informatics and Robotics Simulation) [6], being
then deployed directly on an embedded computer, to test, in real-time, the required compu-
tational load. This enables the possibility of introducing into the photorealistic environment
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optical sensors, such as monocular or stereo cameras, or even Lidars, leading to additional
sources of positioning information. AirSim, a plug-in compatible with Unreal Engine,
also allows the possibility to model the intrinsic and distortion parameters of the optical
camera, mounted on the desired aerial or ground platforms. Moreover, lighting effects
based on predefined daytime hours can be added, increasing the realism of the environ-
ment. In this way, it is possible to deploy visual algorithms more easily, as described in [7],
where AirSim is used for the fast prototyping of algorithms used by racing drones, in a
photorealistic environment.

Although it is possible to validate algorithms directly on embedded Companion
Computers (CCs) before actual deployment in the field, external factors such as multipath,
NLOS, and IMU stochastic and deterministic errors are not considered in the simulation
environment. Multipath in urban canyons plays a disruptive force when acquiring GNSS
location. Due to the obscurations from buildings, NLOS signals reduce positioning accuracy
and increase uncertainty in the receiver location. Furthermore, IMU biases and noises
lead to the divergence of estimated position and ground truth. This effect is known as
random walk (RW). Therefore, the simulation of such physical effects is crucial when
evaluating potential algorithms that can be deployed in such environments. Considering
the challenges in modeling IMU and GNSS sensors in virtual urban environments, more
realistic sensor-based modeling is required.

The considered case study is testing the performances of an AI-based multi-sensor
positioning solution, using a federated fusion architecture, with GNSS, INS (Inertial Nav-
igation System), and a monocular camera, in a photorealist environment. The paper is
organized as follows: in Section 2, the federated fusion framework is presented along
with all the sensors used; in Section 3, the hardware in the loop (HIL) configuration with
all the specifications of the set-up is presented; in Section 4, it is demonstrated that the
proposed testing and validation system enables realism in simulation and repeatability
analysis concerning variability in noise and satellite occlusion and comprehensively covers
needs in the verification of AI-based navigation algorithms; and, finally, in Section 5, the
conclusions are presented.

2. Fusion Framework

Global Navigation Satellite Systems (GNSS) is a constellation of satellites that transmit
signals to ground-based receivers. These signals are used to determine the receiver’s
position, velocity, and time, which are critical components for navigation and timing
applications. The most widely used GNSS system is the Global Positioning System (GPS),
which was developed by the United States Department of Defense. Other GNSS systems
include the Russian GLONASS, the European Galileo, and the Chinese BeiDou.

One of the major disadvantages of GNSS is its performance in urban canyons. Urban
canyons refer to areas with tall buildings and narrow streets, which can create obstructions
that block or reflect GNSS signals. This can result in degraded signal quality and increased
errors in position determination. In urban canyons, the signals can be reflected off buildings
or blocked entirely, leading to multipath errors, where the receiver receives multiple signals
of the same satellite at different times and angles, causing confusion and inaccuracies
in positioning. Additionally, the signal can be absorbed or weakened by atmospheric
conditions or other sources of interference, such as radio waves or electromagnetic fields.

To mitigate the effects of urban canyon environments, GNSS receivers can use a variety
of techniques such as multi-constellation and multi-frequency signal reception, as well
as inertial measurement sensors to estimate position and velocity when GNSS signals
are blocked or unavailable. However, these techniques may not always be sufficient in
highly obstructed urban environments, highlighting the need for alternative positioning
technologies in some scenarios. Considering that IMU sensors based on MEMS (Micro-
Electro-Mechanical System) technology are the source of large time-dependent navigation
errors under long GNSS outages, visual sensors can be considered for integration as a more
resilient solution. VO (Visual Odometry) algorithms can be used to estimate the camera
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ego-motion, providing alternative relative positioning information. Considering that urban
and sub-urban environments are characterized by many details, for this framework, an
ORB (Oriented FAST and rotated BRIEF) feature detector algorithm has been implemented
because of its performance discussed in [8].

To fuse all the data gathered from the sensors described above, a centralized sensor
fusion framework can be implemented potentially. However, the required computational
load decreases the overall efficiency, leading to the so-called ‘dimensional disaster effect’ [9].
Instead, a decentralized fusion framework requires less computational power, allowing
an easier integration on robotic platforms, for real-time applications. In these terms, the
paper implements a decentralized federated sensor fusion framework as described in [2],
using local filters in the form of two EKFs (Extended Kalman Filters) and a GRU (Gated
Recurrent Unit) as the master filter.

GRUs are a variation of RNNs that address the vanishing gradient problem by using
gating mechanisms to selectively pass information forward and backward through time.
The gating mechanisms in GRUs include an update gate and a reset gate, which control
how much of the current input is added to the current state and how much of the previous
state is forgotten, respectively. The mechanics of which are shown in Figure 1b.

Figure 1. Federated fusion architecture (a) [2]; GRU unit (b).

GRUs have become popular for a variety of applications, including natural language
processing, speech recognition, and time series prediction. They have been shown to be
effective at capturing long-term dependencies in sequential data and are often used as
baseline architecture in comparison to more complex models. Overall, GRUs offer a flexible
and effective tool for modeling sequential data and are an important component of modern
deep-learning architectures.

For reducing Inertial Navigation System (INS) position and velocity errors, the pa-
per additionally proposes the utilization of Inertial Measurement Unit (IMU) reading
prediction by using a deep neural network, utilizing GRU, to compensate for the afore-
mentioned errors, as it can be seen in the first left part of Figure 1. Specifically, the
GRU-based error correction model is trained on a dataset composed of IMU readings,
where raw accelerometer and gyroscope measurements serve as input features, and the
distance error between the INS-estimated position and ground truth data constitutes the
corresponding output.

To obtain position data from the accelerometer and gyroscope sensors, Direction
Cosine Matrix (DCM) transformation is employed to convert these sensor readings from a
body frame to the navigational NED frame. Velocity and position data are subsequently
derived through integration, as presented in [10]. However, it should be noted that the
integration process of noise and bias from the sensors generates a random walk effect that
diminishes the accuracy of INS information over extended time intervals.

To mitigate this issue, a GRU network is proposed to estimate the error engendered by
the mathematical process of position information generation. By doing so, the proposed
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approach enhances the accuracy of INS-derived information over extended periods of time,
without requiring frequent updates from Global Navigation Satellite Systems (GNSS).

Thereby, the first EKF is fusing GNSS and IMU positioning data, with the aid of a
GRU block, in a loosely coupled scheme, while the second EKF is fusing the same corrected
IMU data, but with the VO algorithm aid, leading to a VIO (Visual Inertial Odometry)
framework. Further, the outputs from the two EKFs are processed by a trained master GRU
block as presented in [2]. To decrease the computational load required by the master GRU,
the main block, is divided into two sub-blocks, each processing only one coordinate, the N
(North) and, respectively the E (East) coordinate.

3. Hardware in the Loop Configuration

Most of the drones are equipped with a CC (Companion Computer) usually used to
process data, from external sensors, such as monocular cameras, or to deploy AI-based
models to support the Flight Control Unit (FCU) computational cost, which is responsible
mainly for the navigation, control, and stability part of the UAV. An HIL simulation is
performed to validate the sensor fusion framework presented in the previous section. Thus,
the first step to bring realism into the simulation set-up is to implement a Pixhawk 2.4 board
as an FCU that is directly connected to a local computer and used as a CC. With the aid of
Unreal Engine and AirSim, it is possible to link the FCU to a photorealistic environment.
Using photogrammetry data in Unreal Engine, it is possible to mimic the nature of urban
environments, increasing the level of detail in terms of light intensity, realistic weather
effects, and material properties. The main role of the photorealistic environment is to
support validation, and tests of optical sensors that the UAV is equipped with, being
able to specify camera intrinsic and distortion parameters. For the presented scenario,
photogrammetry data from Toulouse and San Francisco are used, as can be seen in Figure 2.

Figure 2. The 3D environment model for Toulouse (a); 3D environment model for San Francisco (b).

Once the link between the FCU, AirSim, and, respectively, Unreal Engine, is estab-
lished, the trajectory commands generated from a Python file that is linked to the AirSim
plug-in are transmitted further to the Spirent GSS7000 simulator, as can be seen in Figure 3.
This allows performing HIL tests in an iterative way, under the same trajectory assumption.
At the same time, the estimated trajectory from the monocular camera is stored in an
Excel file.

Figure 3. HIL set-up.
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Thus, to assess the effectiveness of the proposed architecture, it is necessary to con-
duct training, utilizing realistic scenarios obtained through the use of the Spirent GSS7000
simulator and SimSENSOR obtained from Spirent PLC in Paignton, United Kingdom.
Spirent GSS7000 and SimGEN simulate GNSS Radio Frequencies (RF) that are generated by
satellites in each constellation. Simulation time and constellation settings can be changed
to improve realism by conducting time-accurate comparisons. Furthermore, due to the
repeatability of the simulation set-up, this allows for direct comparisons of different algo-
rithm techniques to be evaluated, reducing independent variables for testing. These signals
are then fed into a GNSS receiver for capturing positioning data. This enables the testing
of Hardware-in-the-Loop (HIL) simulation which improves scenario realism. To produce
IMU data required for training, SimSENSOR is used to generate accelerometer and gyro-
scope measurements that the vehicle is exhibiting. SimSENSOR allows for the simulation
of realistic sensor errors by changing the SimSENSOR deterministic and stochastic error
parameters such as random walk rate and bias offset. This adds an additional layer of
realism to the simulation scenario. For the simulation in this paper, IMU stochastic and
deterministic errors were tuned to mimic the characteristics of an Advanced Navigation
Orientus IMU sensor, the specifications of which are listed in Table 1. These data are then
transmitted via the UDP communication protocol to the AirSim simulator.

Table 1. INS sensor and GNSS receiver specifications.

Sensor Specifications

Accelerometer Gyroscope U-Blox F9P GNSS receiver

Scaling factor
(ppm) 500 Scaling factor

(ppm) 500 Pseudo-range
accuracy (m) 3

Bias (mg) 0.1 Bias (deg/h) 0.001 Pseudo-range rate
accuracy (m/s) 0.5

ARW
(m/s/sqrt(h)) 0.003 GRW (deg/sqrt(h)) 0.003 Update rate (Hz) 1

Update rate (Hz) 100 Constellations GPS L2C, GLO L2OF, GAL
E5b, BDS B2I, QZSS L2C

Data collected from the sensors and simulation systems were stored in a CSV file
format, with the time and date of each timestep recorded. The data were subsequently
processed in MATLAB to generate the ground truth data that served as the training target.
The input data consisted of the raw output from the IMU sensors (accelerometer and
gyroscope in XYZ) and the GNSS latitude, longitude, and height information recorded at a
rate of 1 Hz. Using interpolation, these data were synchronized to the same timestep as the
accelerometer and gyroscope data, which were recorded at 100 Hz.

To further improve realism regarding urban canyon scenarios, OKTAL-SE Sim3D
software is used to introduce the multipath effect on GNSS signals using the ray-tracing
method. The program takes into consideration the specific geometry in the desired urban
environments that are simulated in this paper. Furthermore, the different material proper-
ties underpinning the signal reflection characteristics are also considered for an additional
layer of realism. This will generate line-of-sight, multipath, and non-line-of-sight conditions
for the GNSS signals that are processed by the receiver. No additional multipath mitigation
techniques other than those already provided by the receiver manufacturer are used to aid
in these conditions.
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4. Evaluation

To evaluate the proposed sensor fusion framework, Toulouse, and San Francisco, were
chosen to validate the HIL configuration by adding diversity in the evaluation process.

The fusion framework performances for San Francisco can be observed in the table
below. Two cases were considered, one with the corrected INS data with the aid of a
GRU block, and another one, without. It can be observed that the output of the first
extended Kalman filter, fusing data from the GNSS and the IMU without the GRU aid,
does have inferior positioning performances compared to the one with the GRU aid lead-
ing to a horizontal position RMSE (root mean square error) of 13.22 m (95th percentile).
In comparison to the second EKF, slightly better results were obtained in the case with-
out the GRU aid for IMU, and wort results with the GRU aid, with an equivalent of
3.33 m (95th percentile). The master filter (based on GRU) and fusing data from the EKFs
demonstrate the best performance, with a horizontal RMSE of 0.28 m (95th percentile).
Slightly worst performances were obtained for Toulouse, as can be seen in Table 2 without
the INS GRU aid, due to the VO degradation in the urban environment. It can also be
observed that using the Spirent GSS7000 simulator along with SimSENSOR and OKTAL-
SE Sim3D software, higher errors are introduced into the simulation. Figure 4 shows a
comparison between ground truth and GNSS position in NED coordinates gathered from
AirSim and, respectively, OKTAL-SE Sim3D aid, affected by multipath. Although GNSS
data from AirSim are not affected much by the urban canyon or the urban environment
effects, data from OKTAL-SE Sim3D are more degraded, representing a more realistic
positioning output.

Table 2. Positioning performance for San Francisco and Toulouse.

San Francisco

Position source RMSE N, (m) RMSE E, (m) Horizontal RMSE (95th
percentile) (m)

EKF1 IMU/GNSS (no GRU aid) 5.47 2.45 13.22

EKF2 IMU/VO (no GRU aid) 3.88 2.24 10.09

Master filter (no GRU aid) 5.12 2.40 11.10

EKF1 IMU/GNSS (with GRU aid) 0.16 0.11 0.31

EKF2 IMU/ VO (with GRU aid) 1.60 1.23 3.33

Master filter 0.15 0.10 0.28

Number of VO features (95th percentile) 22,726

Toulouse

Position source RMSE N (m) RMSE E (m) Horizontal RMSE (95th
percentile) (m)

EKF1 IMU/GNSS (no GRU aid) 4.39 2.69 12.43

EKF2 IMU/VO (no GRU aid) 4.37 2.68 12.40

Master filter (no GRU aid) 0.84 3.05 7.03

EKF1 IMU /GNSS (with GRU aid) 0.12 0.09 0.31

EKF2 IMU/VO (with GRU aid) 1.15 1.10 2.42

Master filter 0.12 0.09 0.28

Number of VO features (95th percentile) 17,941
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Figure 4. GNSS data with multipath in Toulouse (a) and in San Francisco (b) scenarios.

Comparing the Horizontal Dilution of Precision (HDOP) and Position Dilution of
Precision (PDOP) between the Toulouse scenario and the San Francisco scenario (Figure 5),
an increase in both HDOP and PDOP measurements can be observed. PDOP considers the
geometry of the satellite in view and the position of the GNSS receiver. Therefore, a higher
PDOP value indicates poor geometry, where the satellites are clustered in a small area of
the sky, making it more difficult to determine a precise position. This is to be expected in
an urban canyon scenario, where large buildings obscure direct LOS signals and reduce the
area signals that can be received by the receiver. This is also visually correlated in Figure 6,
where large urban canyons are present in San Francisco compared to Toulouse.

Figure 5. HDOP and PDOP for Toulouse and San Francisco scenario.

HDOP, on the other hand, specifically measures the accuracy of the horizontal position.
A higher HDOP value indicates that the GPS receiver’s horizontal position calculation is
less accurate, meaning there is more uncertainty in the latitude and longitude coordinates.
A reduced position performance is observed in San Francisco, which represents the urban
canyon scenario. This reduced performance is highlighted by the HDOP in Figure 5,
which shows a higher value than seen in Toulouse. Hence, taking into consideration both
HDOP and PDOP evaluation, the simulations are sensitive with regard to the change in
environment and therefore aid in providing realism regarding the effects of urban canyon
obscuration of LOS signals and multipath effects.
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Figure 6. Feature variation of the VO algorithm in San Francisco (a) and Toulouse (b).

Considering that the UAV’s monocular camera is pointing downwards during the
entire mission, the number of features of the environment on the ground directly affects the
VO performance. The altitude of the UAV and the light intensity are two other factors that
contribute to a good VO positioning output, increasing the realism of the simulation. It can
be seen clearly from Table 2 that more features were extracted when the drone was flying
in an urban canyon, in San Francisco, compared to the flight in the urban environment, in
Toulouse. The number of features directly affects the positioning performance of the UAV,
as can be seen, for the second EKF without the GRU aid for INS, leading the San Francisco
flight to a horizontal RMSE of 10.09 (95th percentile) and a horizontal RMSE of 12.40 (95th
percentile) for Toulouse. As a result, it can be seen that the VO algorithm is more stable in
an urban canyon, rather than an urban environment, due to building height, which leads to
shades induced by the lighting effects generated by the photorealistic environment. Thus,
the VO algorithm does have better performances in San Francisco, rather than in Toulouse,
leading to a more accurate and stable output.

5. Conclusions

The discussed multi-sensor PNT testing, and simulation framework aims to support
the development of navigation solutions for aerial and terrestrial vehicles operating in
diverse and complex environments, such as urban environments. The case study based on
the robust federated fusion architecture illustrates how the enhanced accuracy, resilience,
and integrity of the techniques, relying on the large amounts of diverse training and
testing data, can be developed, and tested ensuring repeatability and realism. Using
Spirent’s GSS7000, SimSENSOR, and OKTAL-SE Sim 3D in combination with AirSim, it
was possible to increase the HIL simulation realism, taking into consideration stochastic
and deterministic errors for the IMU, multipath, and signal obstruction for the GNSS
receiver. Furthermore, the photorealistic environment, with the aid of photogrammetry
data, added to the realism of the vision data simulation, being able to test and validate the
accuracy of the VO algorithm under realistic conditions. With the HIL simulation set-up
presented in this study, it was possible to develop, optimize and evaluate more accurately
the performance of a novel sensor fusion framework, designed to be used by UAVs in
urban environments.
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