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Abstract: The performance of radio-frequency interference (RFI) detection and localization could
be improved if they are applied on good quality inputs. RFI assessment is an important aspect of
evaluating overall signal quality. The worthiness of a Global Navigation Satellite System (GNSS)
receiver output can be generally quantified by a number of parameters readily available from a
receiver. However, such discrete parameters do not give a detailed picture of the quality of the
received GNSS signals. Statistical treatment of the received signals both in the absence and presence
of interference gives some interesting insight about the data. In this paper, we study if the baseband
data from the front-end Analog to Digital Converter (ADC) are normally distributed and if the
presence of interference affects the statistical behavior of the distribution, often characterized by its
probability density function (PDF) and other related parameters, such as skewness and kurtosis. In
the second part of the paper, we study the feasibility of the Shapiro-Wilk (SW) test as a method to
study the effect of interference on the GNSS signal while also serving as a potential approach to assess
RFI. Skewness and kurtosis are statistical measures used to examine the shape of the distribution of a
set of data. The implementation of the Shapiro-Wilk test is also studied, which is a normality test
used to check whether a set of data follows a normal distribution. The above approaches have been
evaluated using an experiment, where an RTLSDR is used as a reference GNSS receiver and simulated
noise is added in the real signals. The data have been logged both in the presence and absence of
wideband interference. The obtained results show the potential of the techniques presented for both
the quantification of GNSS signal quality and the RFI assessment, alike.
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1. Introduction

A compromise in the safety of the GNSS dependent applications has been widely
reported in recent years [1-3]. This leads to an escalation in the demand for more robust,
resilient, and secure navigation systems for such navigation-reliant applications. The
impact of RFI on the receiver operations has been observed at both pre-correlation and
post-correlation stages of the GNSS receiver [4].

The subject of RFI detection has been widely covered in the literature, where both sta-
tistical and non-statistical approaches have been proposed. The non-statistical approaches
often encompass the monitoring of observables in the received signal such as C/Ny, AGC,
and spectrum in terms of power spectral density (PSD), pseudorange, etc., and aim to ob-
serve the abnormalities in the behavior of these observables. In [5], interference is detected
using day to day C/Np monitoring, where the observation of distinct patterns declares
the presence of RFI. The Wavelet-Hough transform approach is proposed in [6], which is a
combination of wavelet transform, which breaks down a signal into different frequency
components extracting local spectral and temporal information in the signal, and Hough
transform, which is a popular feature extraction technique that is widely used in image
processing; here, it is used for a template-matching purpose. A joint Time-Frequency (TF)

Eng. Proc. 2023, 54, 19. https://doi.org/10.3390/ENC2023-15440 https:/ /www.mdpi.com/journal/engproc


https://doi.org/10.3390/ENC2023-15440
https://doi.org/10.3390/ENC2023-15440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-4205-1733
https://doi.org/10.3390/ENC2023-15440
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/ENC2023-15440?type=check_update&version=1

Eng. Proc. 2023, 54,19

20f7

analysis has been proven to be an instrumental technique [7]. These techniques work as the
interference exhibits difference behavior in the time and frequency domain, and even a very
short duration interference that might not be visible in the time domain could be identified
in the frequency domain. The statistical approaches work around analyzing signals in the
time domain or the pre-correlation domain and exploit the established statistical concepts
and principles for RFI detection purposes [8]. In [9], a Chi-square-based goodness-of-fit
method is proposed. The in-phase (I) and quadrature (Q) IF samples from the RF front
end are investigated if they follow the normal distribution. From the literature, there is
no attempt to apply normality tests for detecting distortions in the GNSS signals. It is
important to clarify the difference between the normality testing and goodness-of-fit (GoF)
methodologies. Apart from the obvious mathematical differences, the normality testing
methods take a sample from the population and check whether its population follows
certain normal distribution, whereas the GoF methods aim to fit the available dataset in
order to follow the normal distribution.

The rest of the paper is organized as follows: Section 2 explains the statistical tech-
niques used in the paper for RFI detection, Section 3 presents the SW-based distribution
analysis technique, Section 4 presents the scenario considered for validating the proposed
methods, Section 5 discusses the obtained results, and finally, Section 6 concludes the paper.

2. Statistical Characteristics of Data Distribution

In our analysis, we underscore the importance of the distribution modeled by the
selected data both in the absence and presence of noise. In the current case, we are interested
in two important parameters, skewness and kurtosis, that potentially give a good picture
of how the distribution might look like.

2.1. Skewness

Skewness is a measure of the asymmetry of a distribution. It describes how much the
shape of the distribution deviates from the symmetry around its mean.

If the distribution is symmetric, then the skewness is zero. If the distribution has
a longer tail on the right side (i.e., the positive side of the x-axis), then it is said to be
positively skewed, and the skewness value will be positive. Conversely, if the distribution
has a longer tail on the left side (i.e., the negative side of the x-axis), then it is said to be
negatively skewed, and the skewness value will be negative. Mathematically speaking, it is
computed as
3x — My

skewness(x) = 5

)

where X is the arithmetic mean, M is the median of the distribution, and s is the standard
deviation of the distribution.
The skewness is generally interpreted as:

1. If the skewness is between —0.5 and 0.5, the data are nearly symmetrically distributed
around the mean.

2. If the skewness is between —1 and —0.5 (negative skewed) or between 0.5 and 1
(positive skewed), the sample data are representative of a slightly skewed distribution.

3.  If the skewness is lower than —1 (negative skewed) or greater than 1 (positive skewed),
the sample data would represent an extremely skewed distribution.

2.2. Kurtosis

The kurtosis is a numerical quantification of the tailedness of a distribution. The
standard normal distributions have a kurtosis of around 3, where most of the data are
concentrated around its mean. If the kurtosis is greater than 3 or, in other words, the excess
kurtosis is positive, it means most of the data are concentrated around its mean. Such types
of distributions are termed as a leptokurtic distribution. On the contrary, if the kurtosis
is less than 3 or, in other words, the excess kurtosis is negative, it means that most of the
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data are concentrated around its ends/tails. Such types of distributions are termed as
platykurtic. Mathematically, kurtosis is defined as

G T (i —%)*
[% i (xi — Y)Zr

where 7 is the number of samples, x; is the ith value, and ¥ is the sample mean.

2

kurtosis(x) =

3. Distribution Analysis for RFI Assessment Techniques

The literature covers many normality testing and goodness-of-fit methods that are
suitable for certain applications [10]. Some of the methods are applied on the empirical
distribution formed by the dataset [11,12], whereas others are applied on the subset of
the whole dataset that is assumed to be the representative of the whole dataset. In the
latter category, two popular methods for normality testing are the Shapiro-Wilk (SW) [13]
and Shapiro-Francia (SF) [14] methods. Generally, both methods exhibit equally good
performance; however, in some cases, the SW method shows some sensitivity to the sample
size and the SF method tends to be powerful in alternate hypothesis testing [15]. For the
sake of generality, we do not discriminate the two methods in terms of performance.

In this section, we discuss the normality testing using the SW method and present
them in context of the GNSS RFI assessment. We initiate the analysis by formulating the
hypotheses test for the presence of interference in the system.

Ho(RFI absent): the sample is taken from a normal distribution ©)]
Hq(RFI present): the sample is not taken from a normal distribution 4)

Mathematical Formulation of the Shapiro-Wilk Test

Let us suppose x to be a sample of n GNSS observations derived from a population
with an unknown distribution, where the sample is characterized by its mean (¥) and
standard deviation (o).

x={x1,x2,%3,..., %} (5)

1 n
X=-) % (6)
i
R TP % )
n—15

We need to reorder the sample values in an ascending order, i.e., from smallest to
largest.

x(1) <x(2) <---<x(n) 8)

The mean or the expected values of the sorted sample values under normality can be
computed and the standardized values for the SW test can be calculated.

m(i) = E[x(i)] = ;;0% Vi=12,...n ©)
z(i) = (x(i) — %) /s, Vi=1,2,...,n (10)

Finally, we calculate the coefficients a of the normal distribution, the test statistic W,
and the p-value.

a(i) = ———,Vvi=1,2,...,n (11)
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where L

= 1221 m(i) (12)

1T &, .
= g i) =) (13)

(L a(i)z(i))?
W = 14
() — % 9
p=P(W>ua) (15)

where « is the significance level, that is set to be 0.05; W is the observed value of the test
statistic; and P is the probability function of the null hypothesis, which states that the
sample comes from a normally distributed population.

4. Experimental Setup

A static test is performed using a multiple purpose and low-cost RTL-SDR that is
mainly used as a TV tuner [16] (See Figure 1). However, due to a wide-range demodulator,
the reception of GPS L1 signals is also possible .

RTL-SDR.COM

frivipenit| f QUICKSTART SETUP GUIDE: RTL-SDR.COM/0S6
-y DVB-T-+DAB-+FM-+SDR
RTL2BSIURBOT2 TCXO+BUAS THHE

V3

€REX
Figure 1. RTL-SDR (sixth generation) USB Dongle showing antenna connector (left) and USB port to
connect with PC (right).

The RTL-SDR design is based on the RTL2832U demodulator chip and the raw 1/Q
data can be accessed directly, which allows the DVB-T TV tuner to be used as a wide-
band software defined radio via a custom software driver. Some important technical
specifications, and the settings used to record the dataset, are given in Table 1.

Table 1. RTL-SDR Technical Specifications [9].

Parameter Value
Tune Low (MHz) 24
Tune Max (MHz) 1766
RX Bandwidth (MHz) 3.2/2.56 (Stable)
ADC Resolution (Bits) 8
ADC Sampling Frequency (MHz) 2.048
Intermediate Frequency (Hz) 0

5. Results and Discussion

The frequency spectrum of the GPS L1 signals at the baseband level is shown in
Figure 2. The effect of varying noise levels on the spectrum is evident in the figures. The
wideband noise or white noise has a constant power spectral density across all frequencies,
where the noise energy is spread out across the entire spectrum of the signal, effectively
masking or obscuring any underlying signal components. The same observation can
be seen that the noise adds many unwanted frequencies to the original signal spectrum,
making it more difficult to identify and analyze the desired signal.
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Figure 2. Power Spectrum Density (PSD) of clean (left) and noisy GNSS signals at —20 dB (center)

and —60 dB (right).

5.1. Effect of Noise on the Statistical Properties
The test results obtained using different noise characteristics have been summarized

in Table 2.

Table 2. Results showing the impact of noise on parameters of PDF (Sample Size = 4096).

GNSS Signal and Noise Sample Size Skewness Kurtosis

L1 with no noise 1024 143 5.66
L1 with white noise @ —20 dB 1024 1.30 5.29
L1 with white noise @ —40 dB 1024 0.56 3.25
L1 with white noise @ —60 dB 1024 0.72 3.48
L1 with white noise @ —80 dB 1024 0.58 3.00

L1 with no noise 2048 1.52 6.67
L1 with white noise @ —20 dB 2048 1.39 6.15
L1 with white noise @ —40 dB 2048 0.67 3.25
L1 with white noise @ —60 dB 2048 0.61 3.27
L1 with white noise @ —80 dB 2048 0.6 3.00

L1 with no noise 4096 1.26 5.17
L1 with white noise @ —20 dB 4096 1.16 4.96
L1 with white noise @ —40 dB 4096 0.62 3.21
L1 with white noise @ —60 dB 4096 0.60 3.11
L1 with white noise @ —80 dB 4096 0.70 3.48

L1 with no noise 8192 1.39 6.00
L1 with white noise @ —20 dB 8192 1.25 5.52
L1 with white noise @ —40 dB 8192 0.62 3.14
L1 with white noise @ —60 dB 8192 0.62 3.26
L1 with white noise @ —80 dB 8192 0.66 3.32

We observe some very interesting trends from the above results. In comparison with
the reference parameters of the PDF computed using clean signals, we observe that the
distributions tend to become less skewed and so does the kurtosis approach to limiting
the kurtosis value to 3.0. A slight increase for the added noise of intensity —60 dB can be
ignored here as it does not have a substantial impact on the data distribution. This means
the higher noise tends to overcome the real GNSS signals, leaving to follow an even greater
corruption, whereas the lower intensity noise tends to normalize the signals to follow a
moral and normal distribution-like behavior.

As far as the impact of sample size on the distribution shape is concerned, the values in
the table indicate that there is no drastic change in the shape of the bell curve characterized

by the corresponding skewness and kurtosis values, as shown in Figure 3.
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Figure 3. Histogram and distribution fitting for the samples taken from the clean (left) and noisy
GNSS signals at —20 dB (center) and —60 dB (right), where the sample size is 4096.

5.2. Shapiro—Wilk Test Results

Typically, the test results are interpreted based on the statistics value and p-value that
are compared against the significance level, which is considered to be 0.05. If the p-value is
greater than the significance level (usually 0.05), then there is not enough evidence to reject
the null hypothesis that the data are normally distributed. This means that the sample is
likely to be normally distributed. If the p-value is less than or equal to the significance
level, then there is evidence to reject the null hypothesis and conclude that the data are not
normally distributed. This means that the sample is unlikely to be normally distributed.

Table 3 tabulates the SW test results for various test cases. It can be seen that the null
hypothesis is not rejected in any case, meaning that the injection of noise does disturb the
normal behavior of the distribution. However, the parameters pertaining to the SW test
paint an interesting picture. Firstly, the decrease in the noise level in the signal decreases the
value of the test statistic, and this trend is visible for each sample size in the table. Secondly,
the impact of sample size is also evident, as having a bigger sample size increases the value
of the test statistic, leading to the conclusion that the SW, in the current case, is sensitive to
the sample size.

Table 3. Shapiro-Wilk Test Results performed for various noise levels.

GNSS Signal Sample Size Test Statistics Value (w) p-Value SK-Test Inference
L1 with white noise @ —20 dB 1024 0.04 1 Null Hypothesis not rejected
L1 with white noise @ —40 dB 1024 0.004 1 Null Hypothesis not rejected
L1 with white noise @ —60 dB 1024 44 x107° 1 Null Hypothesis not rejected
L1 with white noise @ —80 dB 1024 4.4 x 1077 1 Null Hypothesis not rejected
L1 with white noise @ —20 dB 2048 0.09 1 Null Hypothesis not rejected
L1 with white noise @ —40 dB 2048 0.009 1 Null Hypothesis not rejected
L1 with white noise @ —60 dB 2048 88 x 107° 1 Null Hypothesis not rejected
L1 with white noise @ —80 dB 2048 8.5 x 1077 1 Null Hypothesis not rejected
L1 with white noise @ —20 dB 4096 0.13 1 Null Hypothesis not rejected
L1 with white noise @ —40 dB 4096 0.016 1 Null Hypothesis not rejected
L1 with white noise @ —60 dB 4096 1.79 x 1074 1 Null Hypothesis not rejected
L1 with white noise @ —80 dB 4096 1.78 x 107° 1 Null Hypothesis not rejected
L1 with white noise @ —20 dB 8192 0.32 1 Null Hypothesis not rejected
L1 with white noise @ —40 dB 8192 0.03 1 Null Hypothesis not rejected
L1 with white noise @ —60 dB 8192 3.48 x 1074 1 Null Hypothesis not rejected
L1 with white noise @ —80 dB 8192 35x107° 1 Null Hypothesis not rejected

6. Conclusions

The statistical methods of monitoring the signal quality and assessing the interference
in the GNSS signals have been presented in the paper. The assessment covers the subject
from two different loosely related methods. The first method is based on the deriving the
statistical properties of the distribution formed by the dataset and comparing it with the
same using the clean dataset. The second method is based on the SW-based normality
testing method that identifies if the selected sample from the complete dataset is represen-
tative of the complete dataset by checking if the sample exhibits the properties of a normal
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distribution. In both cases, we studied the effect of the noise level and sample size on the
desired observables. Such assessment could be instrumental in an offsite assessment of
the dataset. Even though the preliminary results help us explain the phenomenon, the
implementation of the presented techniques should be implemented on a wider range of
scenarios with different receiver types, signals, and noise sources.
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