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Abstract: Nowadays, commercial aeronautical Global Navigation Satellite Systems (GNSS) receivers
are more and more exposed to Radio Frequency Interference (RFI) threats from GNSS jammers and
spoofers. On commercial aircraft GNSS, receiver outputs, in general, are integrated or cross-monitored
with other navigation sensors such as IRS and DME, etc., and, in many cases, the GNSS receiver
outputs are used directly by on-board aircraft systems. The advent of modernized dual-frequency
and multi-constellation signals will improve the availability and integrity of GNSS receivers in the
presence of RFI. To be further resilient to the various types of RFI threats, the airborne GNSS receiver
will need to perform additional receiver-based detection/mitigation techniques and should be able
to determine position integrity in the presence of spoofers. This paper focuses specifically on two
techniques under development that will be incorporated via a field loadable software update to the
GLU-2100. The first method, Receiver Autonomous Signal Authentication (RASA), and a second
type of technique, Staggered Examination of Non-Trusted Receiver Information (SENTRI). The paper
will provide a brief description of the RASA and SENTRI algorithms, followed by results from both
simulation and real-world tests. Finally, the limitations of the algorithms will also be provided.

Keywords: GNSS; RFI; anti-spoofing

1. Introduction

Nowadays, commercial aeronautical GNSS receivers are more and more exposed to
RFI threats from GNSS jammers and spoofers. Worldwide reports from air navigation
service providers and Collins customers have confirmed that commercial airborne GNSS
receiver products have been exposed to both jamming and spoofing. The following three
publications, Collins Aerospace RFI Assessment [1], SIB EASA’s Safety information bul-
letin [2], and the 2022 ITU RRB circular [3] particularly show the increasing RFI threats and
vulnerabilities of commercial airborne GNSS receivers.

1.1. EASA Related RFI Events

Through its safety information bulletin released in February 2023 [2], the European
Union Aviation Safety Agency (EASA) reported a significant increase in jamming and
or possible spoofing of GNSS since the beginning of 2022. The bulletin lists the areas
affected by these events and provides a list of issues such as an inability to use GNSS for
waypoint navigation, a loss of RNAV and RNP operations, inconsistent aircraft positions,
a loss of ADS-B, wind shear and surface functionalities, the failure or degradation of
ATM/ANS/CNS and aircraft systems which use GNSS as a time reference, potential
airspace infringements, and/or route deviations that a degradation of GNSS signal could
generate. EASA has recommended a series of mitigating measures to address issues related
to GNSS jamming and spoofing. These measures focus on being prepared with alternate
procedures when GNSS is unavailable due to jamming and spoofing.
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1.2. Collins Aerospace RFI FlightAware Data Analysis

Collins developed a method using FlightAware’s Firehose service to identify airborne
GNSS RFI by detecting ADS-B Out drops within a given time interval from co-located
aircraft equipped with ADS-B Out transponders [1]. This analysis shows that, while less
than 1% of all flights over the CONUS during the time period of analysis were impacted by
RFI, sustained RFI-related outages were observed in specific regions (Figure 1). Validation
of the results showed that the method was successful at detecting RFI when and where
intentional RFI was expected via aviation NOTAMs.
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1.3. Circular from the ITU the Radiocommunication Bureau

The ITU Radio Regulations Board (RRB) has advanced a circular letter [3] to member
states with recommendations for mitigating harmful interference to RNSS receivers using
measures such as reinforcing navigation systems’ resilience to interference, increasing
collaboration between regulatory and enforcement authorities, and retaining conventional
navigation infrastructure for contingency support in case of RNSS outages.

2. The Collins Aerospace GLU-2100 Multi-Mode Receiver (MMR)

The Collins Aerospace GLU-2100 MMR features a hardware, software, and firmware
baseline that has been certified on Airbus and Boeing platforms. It is an ARINC 755-4
compliant unit whose GNSS navigation is currently based on GPS and SBAS L1 signals. The
baseline GLU-2100 software, hardware, and firmware are designed to Level A DO-178C [4]
and DO-254 [5] standards. Further, a dual thread processing architecture is used to meet the
safety requirements of a unit whose failure could lead to catastrophic conditions. The hard-
ware baseline architecture allows the GLU-2100 to be upgraded via a software/firmware
field load to support GPS, SBAS, Galileo, and Beidou dual frequency signals.

The baseline GNSS engine within the GLU-2100 supports a Universal Channel Ar-
chitecture [6] that can be configured at run-time to track any of the supported signal
types. The DFMC capability of the GLU-2100 was demonstrated as part of the Boeing
ecoDemonstrator [7] program. Further, as part of the European Union MUGG project, the
universal channel architecture was leveraged to implement the core GNSS acquisition,
tracking, and demodulation functions as defined in the DFMC MOPS ED-259A [8]. The
navigation software was updated to support future navigation modes such as DFMC SBAS
and H-ARAIM.

3. Overview of the RFI Technology in Collins Aerospace GNSS Solutions

Collins Aerospace has the following three-pronged strategy to address GNSS RFI
threats, as illustrated in Figure 2:

• RFI Detect—generic flag to warn the user of the presence of RFI.



Eng. Proc. 2023, 54, 18 3 of 9

• RFI Mitigate—identify more precisely the magnitude of induced position errors, jam-
mer strengths, or the specific satellite signals that are being spoofed.

• RFI Playthrough—play through jammer and spoofer attacks by continuing to output
authentic position solutions.
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Figure 2. Collins RFI Response Strategy.

The next generation of Collins Aerospace GNSS receivers will introduce multiple RFI
resilience techniques via field loadable software updates to satisfy the goals of the RFI
mitigation strategy. The remainder of this paper will focus on two techniques known as
RASA and SENTRI that will be used for spoofer detection.

4. Receiver Autonomous Signal Authentication (RASA)

RASA [9,10] is a Collins patented technique that uses the effect of the spoofer that is
observed on the receiver’s clock bias estimate to detect the presence of spoofers. When
spoofed GNSS signals are received from a single transmitter, the path lengths between
the transmitter and the aircraft are common to all the spoofed signals and so affect the
estimated receiver clock bias (unsynchronized spoofing, Figure 3a). Even if the path length
is estimated and accounted for by the spoofer (synchronized spoofing, Figure 3b), the clock
bias estimate will be impacted by the error in this estimate. If the baseline no-fault behavior
of the clock is known under worst-case environmental conditions such as vibration and
temperature ramps, the change in the clock behavior due to spoofing can be used to detect
a spoofer at a fixed PFA. The clock behavior is assessed by computing the Allan variance of
the clock bias, with the performance varying based on the τ (time between clock samples)
and averaging period over which the Allan variance is computed.
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Figure 3. GNSS receiver operation in the presence of unsynchronized (a) and synchronized (b) spoofing.

An RASA detection performance analysis was performed with live-sky authentic
measurement logs captured with multiple GLU-2100 units during flight trials and other
dynamic scenarios, as well as scenarios generated on a GNSS RF simulator. The RASA
statistic was computed offline over the full duration of each scenario for each simulated
spoofer. The simulation is somewhat conservative, as it assumes that the spoofer can
track and rebroadcast the spoofed measurements without any errors. Figure 4 shows the
performance of different combinations of τ and Allan variance averaging periods in terms
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of the relative LoS acceleration with the worst-case fixed Pfa threshold to achieve a detection
rate of 99%, as well as the detection performance of the chosen τ of 1 s and averaging
period of 24 s.
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4.1. RASA Simulations: Real World Commercial Flight Dynamics

Twenty real world flight trajectories of different lengths and aircraft types were ana-
lyzed to produce statistics of the LoS acceleration between static ground-based spoofers
and aircraft position throughout the duration of flight (Figure 5a).
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Figure 5b shows the cumulative upper tail probability function of the aggregate LoS
acceleration. With the tunable parameters already discussed and a 99% probability of
detection at an LoS acceleration of 1 m/s2, RASA could be expected to achieve a total PD
of around 95% (per sample) for an unsynchronized spoofer within 5 km of the aircraft,
decreasing to around 45% for a spoofer between 9 and 10 km.

4.2. RASA Simulations: Mixed Sets

The following simulation results show the effectiveness of RASA when a combination
of authentic LoS and spoofed signals are tracked. The ratio of authentic to counterfeit
signals used in RASA offline processing, as well as the specific set of spoofed measure-
ments within the same ratios, were varied. The results shown in Figure 6 indicate that
RASA detection performance was not significantly reduced if the LoS acceleration was
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greater than ~1.1 m/s2, even when only one of the measurements used in the naviga-
tion solution was counterfeit. As the LoS acceleration was reduced below this value, the
performance diminished.
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4.3. RASA Simulations: Synchronized Spoofers

Residual estimation error from an in imperfectly synchronized spoofer was simulated
with a first-order Gauss Markov model. This spoofer model generalizes the estimation
error to a time variation of error magnitude along the LoS vector. The ASA detection
performance in the presence of this model is shown in Figure 7. A standard deviation
greater than 6 cm is detectable at 100% per sample.
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5. Staggered Examination of Non-Trusted Receiver Information (SENTRI)

SENTRI (Figure 8) is a Collins patented [11] technique that uses multiple inertial
coasted position solutions as trusted sources to protect a master GNSS position solution.
Initially, the master solution will be the L1 SBAS solution or the L1 GPS-only solution,
but in the future, the master solution can be a DFMC SBAS or H-ARAIM solution. In
this architecture, the error estimation Kalman Filter maintains a fully blended GNSS-
Inertial position solution. Three staggered coasting solutions (1, 2, and 3) are derived
from the blended solution by propagating their solutions on pure inertial data without
any GNSS measurements. The premise behind the SENTRI algorithm is that, when the
GNSS measurements are being spoofed, the master solution will deviate from the coasting
solutions. Depending on the stability of the IRS, the coasting solutions will gradually
degrade in position accuracy, but they will not be tainted by the spoofed measurements.
When considering a single coasted solution, the optimal performance of the of the SENTRI
detector is achieved when the start of coasting occurs just before the GNSS measurements
are spoofed. In this case, the coasting solution is untainted by the spoofed measurements
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and the master solution deviates maximally from the coasted solution. In the case where
the start of a coasting solution occurs just after the GNSS measurements are spoofed, the
master solution deviates minimally from the coasted solution. Since the start time of the
spoofer is unknown, the coasted solutions are staggered in time such that the spoofer can
be detected regardless of the relationship between the coasting start and spoofer start times.
In the GLU-2100, SENTRI is implemented with three staggered coasted solutions, each
with a coasting time of 30 s and staggered with an offset of 10 s between them.
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SENTRI uses parity space techniques to determine a protection bound of the spoofing-
induced master solution position error. The fault detection and protection level computation
are mechanized by considering the measurement vector of the least square solution to be
composed of the coasting solution coordinate (in either x, y, or z direction of the local level
frame) and the corresponding master solution coordinate. The parity vector is dependent
on the difference between the master and coasted solution coordinates. Standard parity
space methods are used to derive fault detection and protection level statistics.

5.1. SENTRI Simulations and Performance

The RTCA MOPS for GNSS-Aided Inertial Systems DO-384 [12] Appendix Q defines
the simulation approach to generating performance data to populate spoofer claim tables.
Three types of spoofers are considered, position step, velocity step, and acceleration step.
The scenario includes initialization time, exposure time, and recovery time. In general,
the detection performance of the SENTRI algorithm in the presence of different spoofer
types is dependent on the aircraft dynamics and the accuracy of the master solution. For
this analysis, the aircraft dynamics were divided into normal and abnormal dynamics,
as defined in Section 2.1.2.5 of DO-229E [13]. The GPS navigation mode and SBAS PA
(Precision Approach) navigation mode accuracy values were used to model the master
solution accuracy.

As seen in Table 1, the SENTRI algorithm performs better under normal dynamics
and when the master solution is a more accurate solution such as the SBAS master solution.
The above results are preliminary in nature and were determined via simulations that used
the same model that is used to generate the code that is executed on the GLU-2100. For
purposes of illustration, one run of the SENTRI simulation is shown below to demonstrate
the spoofer detection capability when a velocity ramp of 1 m/s is introduced in SBAS mode.
In Figure 9, the 1 m/s velocity ramp spoofing begins at 800 s into the run. The SENTRI
alert occurs at 820 s and the SENTRI HPL bounds the master solution error.
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Table 1. SENTRI Detection for GPS L1 and SBAS L1 Master.

Normal Dynamics Abnormal Dynamics

GPS L1 SBAS L1 GPS L1 SBAS L1

Min Position Step (m) 40 30 45 35

Min Velocity Step (m/s) 1.5 1.0 2.5 2.0

Min Acceleration Step (m/s2) 0.24 0.15 0.28 0.20
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5.2. Real-Time Demonstration of SENTRI Spoofer Detection Capability

In this test, the performance of the Real-Time SENTRI software (version 2.0) was
tested in the lab with hardware in the loop by connecting a GLU-2100 unit loaded with the
SENTRI software to a GNSS signal simulator. The NAV grade inertial data were simulated
by generating the attitude and inertial position data from the simulator scenario and then
adding the IMU noise to the simulated data by using the model of an NAV grade inertial
system. The simulated IRS ARINC 429 labels were then sent to the GLU-2100 on the IRS
input bus, thus mimicking the aircraft installation conditions. For purposes of illustration,
the results from a scenario that mimics a true flight test on a Collins 604 Challenger Flight
Test aircraft are discussed below. In this scenario, the spoofer was generated to gradually
drift the GNSS signal simulated position from the true flight path.

In Figure 10, it is seen that the spoofer attempts to gradually drift the aircraft position
from the true position. The SENTRI algorithm raises a spoofer alert before the position
error exceeds the protection level.
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6. Integration of RASA and SENTRI in the GLU-2100

The previous sections demonstrated the spoofer detection performance of the RASA
and SENTRI algorithms. The limitations of the algorithms were also presented. The RASA
algorithm was shown to have a poor detectability when the line-of-sight acceleration
between the aircraft and spoofer was low. Further a protection bound cannot be calculated
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for the RASA detector. RASA also has a longer time-to-detect and it generally requires the
probability of false alarm to be high to reliably detect spoofers. The SENTRI algorithm
provides a protection bound around the spoofer detection. SENTRI requires that it is
initialized with authentic signals. In the GLU-2100, the complementary benefits of RASA
and SENTRI are used together to improve the resilience of the GNSS to spoofing. RASA
(with a higher probability of false alarm) is initially used to confirm that all the signals
being tracked are authentic signals. Once this authentication is confirmed, the GNSS
measurements are passed on to SENTRI to initialize the blending filters. After SENTRI
initialization, RASA continues to execute in the background and its detector outputs are
only used for maintenance logging. SENTRI is used to detect the presence of spoofers and,
if spoofers are detected, the GLU-2100 may enter a pure inertial coasting mode. Once a
spoofer is detected, the SENTRI processing is terminated, and RASA is once again activated
to monitor for authentic signals. Upon the successful acquisition of authentic signals,
SENTRI is once again re-initialized and the RASA-SENTRI workflow repeats again.

The SENTRI protection level is expected to be used only when inertial coasting is
triggered because of spoofer detection. The use of the SENTRI protection level has the
potential to reduce the availability of GNSS integrity. Until a standardized availability
analysis for spoofer detection is accepted by the avionics community, the GLU-2100 will not
output the SENTRI protection level as part of its integrity levels under normal operation
when spoofing has not been detected.

In summary, while the combination of RASA and SENTRI techniques has proven
to be highly effective in detecting and mitigating GPS spoofing attacks, it is important
to be aware of their limitations and to implement appropriate measures to address these
challenges. By doing so, we can ensure that our GPS systems remain secure and reliable,
even in the face of sophisticated spoofing attacks.

7. Conclusions

GNSS RFI threats have become increasingly common and are being reported regularly
on a worldwide basis. GNSS receivers that are used in all applications, including com-
mercial aviation, will need to consider implementing techniques to address the threats of
GNSS spoofing and jamming. Collins Aerospace plans to introduce features via a software
field loadable update to the GLU-2100 product to improve its resiliency to GNSS spoof-
ing and jamming. This update introduces two techniques, RASA and SENTRI, that can
be used together in a complementary fashion to reliably detect the presence of spoofers.
Additionally, this update will provide improved robustness to data spoofing attacks that
induce errors in ephemeris, almanacs, and GPS time jumps, etc. Further, this update will
enable the GLU-2100 to coast through GNSS outages that are induced due to spoofing or
jamming. Future technologies will leverage antenna techniques, signal analysis, DFMC
signals, and APNT to increase the robustness to new and evolving threats. The goal of
this RFI mitigation roadmap is to continue to ensure that GNSS can be used in a safe and
reliable manner in civil aviation.
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