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Abstract: Embroidery, once a symbol of craftsmanship, has transformed into a cutting-edge tech-
nology blending tradition and innovation. This article delves into the multifaceted applications of
embroidery technology in smart and e-textiles, showcasing its precision in integrating electronic
components and PCBs and embroidering complete electrical circuits. Addressing challenges in
reliability and mass production, the article provides research-backed solutions, offering guidelines
for reliable embroidered interconnections and conductive traces. Positioned in mass production, em-
broidery’s automation and scalability seamlessly extend industrial practices to e-textiles, establishing
this technique as a dynamic force shaping the future of smart-textile technology.

Keywords: embroidery; reliability; automation; scalability; mass production; e-textiles; smart textiles

1. Introduction

Embroidery, rooted in historical artistry, has evolved into a pioneering technology at
the crossroads of tradition and functionality. This article highlights the modern applica-
tions of embroidery in the field of smart and e-textiles. Bridging traditional fabrics and
cutting-edge technology, e-textiles find applications across diverse sectors, like automo-
tive, aerospace, sports and fitness, medical, home textiles, and wearable technology. The
precision and automation of embroidery make it an ideal tool for seamlessly integrating
functional elements like sensors, actuators, and antennas into textiles. By using conductive
threads and specialized attachments for the automated integration of electronic compo-
nents, embroidery techniques, originally developed for aesthetic purposes, now enable
reliable and scalable e-textiles’ production.

2. Challenges and State-of-the-Art Solutions for the Mass Production of
Embroidered E-Textiles

In the literature, numerous smart and e-textiles solutions showcase academic prowess,
often supported by proof-of-concept devices. However, transitioning these innovations
into marketable products faces hurdles, particularly in reliability and mass production.
This section identifies primary challenges and unveils state-of-the-art solutions through
embroidery technology.

2.1. Reliability

Reliability is pivotal for any product, especially in the realm of functional and techno-
logical devices. E-textile products must meet textile requirements like everyday durability
and washability, as well as electronic device standards for proper function and safety.

In the following, we focus on the reliability aspect of embroidered interconnections
between the soft fabric and the rigid electronic components, as well as the reliability of
embroidered conductive traces as a medium for power and signal transmission.
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2.1.1. Embroidered Interconnections

Establishing a robust interface between the flexible fabric and rigid electronic com-
ponents stands as a primary challenge in e-textile production, irrespective of the chosen
production technology. Embroidery technology addresses this challenge by automatically
stitching electronic components and PCBs onto textiles, ensuring both mechanical and
electrical connections using conductive threads. Our team’s research resulted in guidelines
for the PCB design and stitch sequence, allowing the creation of highly reliable embroidered
interconnections without the need for additional solder materials or conductive adhesives.

(a) PCB design guidelines

In the course of our research, we scrutinized various off-the-shelf PCBs explicitly
designed for manual integration into textiles in hobbyist projects. Notable examples include
the “Lilypad Arduino 328” and the “Adafruit Circuit Playground Express”. Additionally,
we introduced a custom-designed PCB named “ZSK E-Tex-Board”, tailored specifically for
embroidery, and conducted a comparative analysis against the off-the-shelf counterparts.
The geometric properties of these three PCBs are summarized in Table 1.

Table 1. PCB geometry feature comparison between the three examined PCBs [1].

PCB
Geometry Feature

Lilypad
Arduino 328

Adafruit Circuit
Playground Express

ZSK
E-Tex Board

PCB shape Round Round Round
PCB diameter 50.0 mm 50.6 mm 40.0 mm
PCB thickness 0.8 mm 1.5 mm 0.5 mm

Contact pads count 22 14 21

Contact-hole-to-PCB-edge distance 1.8 mm 0.6 mm 1.0 mm
(castellated holes)

Contact hole diameter 3.0 mm 3.5 mm 1.5 mm

Embroidery pad
geometry
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To evaluate the different PCB geometries quantitatively, we subjected them to 
washing tests. The resistance of the 3 mm long embroidered conductive traces, including 
the contact resistance to the PCB, was measured. The Madeira HC 40 conductive 
embroidery thread was used for all samples. The results are illustrated in Figure 1 and 
underscore the significant advantage of the E-Tex Board in terms of both mean and 
standard deviation values. 
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To evaluate the different PCB geometries quantitatively, we subjected them to washing
tests. The resistance of the 3 mm long embroidered conductive traces, including the contact
resistance to the PCB, was measured. The Madeira HC 40 conductive embroidery thread
was used for all samples. The results are illustrated in Figure 1 and underscore the signifi-
cant advantage of the E-Tex Board in terms of both mean and standard deviation values.

(b) Stitch sequence guidelines

In a subsequent investigation, we examined the impact of various stitch parameters,
such as number of stitches, stitch orientation, and stitch-to-PCB-edge distance. Figure 2
illustrates all the scrutinized stitch sequences employing the Madeira HC 40 conductive
embroidery thread and the ZSK E-Tex Board. Following this, washing tests were conducted,
systematically measuring the resistance of the 3 mm long embroidered conductive traces,
including the contact resistance to the PCB. The findings, as depicted in Figure 3, underscore
the considerable influence of the stitch sequence on the reliability of the embroidered
connection. Small distance between stitches and PCB edge results in more tight and
therefore more durable connections. The smallest mean value and standard deviation of
the resistance was achieved with three crisscrossed stitches and a 0.75 mm distance to the
PCB edge.
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2.1.2. Embroidered Conductive Traces

(a) Compensation for high yarn resistivity and avoiding conductive thread damage.

Addressing the challenge of a high resistivity in conductive embroidery threads
involves innovative solutions. Embroidering multiple passes, resembling a running stitch,
acts like parallel resistors, reducing resistivity. Incorporating a conductive bobbin thread
reinforces the electrical path, contributing to an increased conductivity. It is crucial to
alternate the stitching path with each pass to avoid stitching into the already embroidered
thread. Alternatively, conductive traces can be embroidered as filled areas, using the so-
called fill stitch, with an underlayer angled to the primary stitch direction. This technique
ensures a high material density and sufficient electrical contact between stitches [3].

(b) Enabling Crossing and Insulation of Conductive Traces

Complex e-textiles’ designs often feature closely adjacent or intersecting conductive
traces. To prevent unintended electrical connections, nonconductive bridges can be added
between traces, created by embroidering multiple layers of satin stitch with nonconductive
thread. Conductive traces can also be completely covered with nonconductive thread
to mechanically protect the thread and match to the design. For applications requiring
waterproofing, a seam-sealer tape or polymer coatings can be utilized.

2.2. Mass-Producibility

Achieving mass-producibility is a critical aspect for transitioning e-textile innovations
from concepts to market-ready products. This involves addressing two fundamental
aspects: automation and scalability.

2.2.1. Automation

Embroidery technology’s high degree of automation is a pivotal factor in stream-
lining the production of e-textiles. Modern embroidery machines boast computerized
precision, ensuring consistent quality. A state-of-the-art sequin placement device can be
configured to incorporate functional sequins into textiles (Figure 4a). Functional sequins
can be equipped with SMD soldered components, such as LEDs or RFID chips. For larger
circuit boards, whether rigid or flexible, embroidery machines fitted with the automated
ZSK PCB Placement Device can precisely position and secure the PCBs onto the textile
(Figure 4b), followed by the embroidery of the electrical connections. This level of automa-
tion is particularly advantageous in realizing large-scale production with high reliability
and reproducibility.
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2.2.2. Scalability

Embroidery, having served as an industrial production technology for decades, em-
bodies inherent scalability. The introduction of multihead embroidery machines allows
for a proportional increase in output per unit time without compromising quality. This
scalability is instrumental in extending the same production techniques to the realm of
e-textiles, making it feasible to produce them on a large scale. The utilization of established
industrial practices ensures that the benefits of embroidery, such as precision, durability,
and versatility, are seamlessly extended to the mass production of e-textiles.

3. Conclusions

Embroidery technology, evolving from a historic craft to a cutting-edge innovation,
stands as a pivotal force at the crossroads of tradition and technology. Its precision and
automation capabilities unlock a myriad of applications, from incorporating electronic
components and PCBs to embroidering complete electrical circuits. In the landscape of
mass production, automation and scalability can be achieved by embroidery, ensuring
precision, consistency, and efficiency.

As technology advances and the demand for smart textiles grows, continued research
and innovation in the field of technical embroidery will be essential. With ongoing efforts to
refine techniques and materials, we can expect to see even more sophisticated and reliable
embroidered e-textiles, opening up new possibilities in wearable technology, healthcare,
fashion, and beyond.
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