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S1. Geometrical Model Details
This section serves to explain in more detail the mathematics of the geometrical model 

used in the main text and as a reference to the Maple code provided in the repository.

S1.1. Generation of a Helical Surface
The model begin with the parameters of the fibres: EAF initial d iameter D E,i and 

Poisson’s ratio ν, IEF diameter DI , initial helical pitch of the system pi, and number of turns
n. The fibres in 3D space are modelled starting from the equation for a 3D helical path
concentric with the x-axis parameterized by t = 0, . . . , 2π: 8

~h(t) =
[ p

2π rM cos(t + θ) rM sin(t + θ)
]
, (S1)

with major radius rM, pitch p, and phase offset θ (shown in Fig. S1a). A circle of minor 9

radius rm parameterized by u is revolved along the tangent of the path to obtain a helical 10

surface (Fig. S1c): 11

~H(t, u) = ~h(t) + rM cos(t + θ)~r(t) + rm sin(u)~s(t), (S2)

where the orthonormal bases ~q(t),~r(t), and~s(t) (Fig. S1b)) are the normalized tangent 12

vector to ĥ, the orthogonal vector pointing toward the x-axis, and~q(t)×~r(t), respectively. 13

At strain ε = 0, the EAFs are modelled as helices with rM = rm =
DE,i

2 , p = pi, and with 14

θ = 0 for one EAF and θ = π for the other. Equation (3) shows the full equation for a helical 15

surface. 16

~H(t, u) =



x(t, u) = p
2π t + rMrm sin(u)√

r2
M+( p

2π )
2

y(t, u) = rM cos(t + θ)− rm cos(t + θ) cos(u) + p·rm sin(t+θ) sin(u)

2π

√
r2

M+( p
2π )

2

z(t, u) = rM sin(t + θ)− rm sin(t + θ) cos(u)− p·rm cos(t+θ) sin(u)

2π

√
r2

M+( p
2π )

2

(S3)

19

S1.2. Position of the IEFs 
         Each EAF in the 3D double helix may be sliced by a plane normal to the x-axis by 
solving the x-component of ~H(t, u) for t and substituting it back into the other components 
to obtain a closed curve in the cross-section ~C(u). From the cross section, the position of the 20

(a)~h(t) (b) Coordinate frame (c) ~H(t, u)
Figure S1. Generation of a helical surface.
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Figure S2. Position of the IEF (red, green) in the helical EAF complex (blue) grooves.

IEFs is determined by finding the closest that they can be positioned in the groove to have 21

point contacts with the EAFs, corresponding to the smallest distance to the origin along 22

the z-axis that a circular cross section can be fit. Geometrically, this is done by finding the 23

value of u such that its distance to the z-axis along a vector perpendicular to the EAF curve 24

is equal to the IEF diameter. The perpendicular direction to ~C(u) is: 25

~C⊥(u) =
[
− d~Cz(u)

du
d~Cy(u)

du

]
. (S4)

From Equation (4), the value of u is found that satisfies the condition: 26

−~Cy(u)

cos
(

tan−1
(

~C⊥,z(u)
~C⊥,y(u)

)) − DI
2

= 0. (S5)

The helical surfaces corresponding to the IEFs have rM equal to the z-coordinate from 27

π
2 28

29

30

31

32

the solution of Equation (5), rm = DI , and θ = , 32
π , resulting in the initial cross-sectional 

geometry shown in Fig. S2.

S1.3. Behaviour of IEFs During Strain

The IEF helices’ minor radius is constant and their major radii are only dependent on
initial conditions and strain ε. Equation (6) shows an equality to solve for rM,I of the IEF 
helices as a function of ε, by equating their linear length lI , which remains constant. 33

lI(0) = lI(ε)

n
√
(π(DI + DE(0)))

2 + p2 = n
√
(π(2rM,I(ε)))2 + (p(1 + ε))2

rM,I(ε) =
1

2π

√
π2(DE(0) + DI(0))2 − p2ε(ε + 2) (S6)
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Using the model assumptions described in the main text, rM,I (ε) from Equation (6) is 
sufficient to calculate capacitance between the w ires. The geometry of the EAFs during 
strain is not necessary, but described below to allow for future improvements to the model 
(such as taking into account the dielectric constants of air vs. EAF material).

S1.4. Behaviour of EAFs During Strain
During straining, the shape of the elastic EAFs is constrained: (i) by the length of 

the helical path (Equation (7)), and (ii) by their linear extension from Poisson’s ratio 
(Equation (8)). Both of these conditions are dependent on DE as it evolves with strain. 41

lE,h(ε) = n

√
4π2

(
DE(ε) + DI

2
− 1

2π

√
(DE(0) + DI)2π2 − p2ε(ε + 2)

)2

+ p2(1 + ε)2     (S7)



Figure S3. Solving the equality from Equations (7) and (8) to determine the EAF parameters at any
strain.

lE,ν(ε) = exp

− ln
(

DE(ε)
DE(0)

)
ν

lE,0 (S8)

By solving the equality lE,h(ε) = lE,ν(ε), the EAF diameter DE(ε) and thus length may 42

be found. This was done numerically in practice, visualized in Fig. S3. 43

S1.5. Calculation of Capacitance 44

Given the evolution of the IEF major radius rM,I(ε) with strain, the formula for capaci- 45

tance of two parallel wires (Equation (9)) may be used to estimate the capacitance of the 46

sensor. 47

C(ε) =
πε0εrlI(ε)

ln
(

2rM,I(ε)
DI

+
√

4rM,I(ε)
DI

− 1
) (S9)
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