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Abstract: Diabetes mellitus affects more than 400 million people worldwide, and the incidence of
disease is rising. Current anti-hyperglycemic agents share major drawbacks, such as hypoglycemia
and low potency due to a lack of target specificity. Drug repurposing accelerates drug research and
development pipelines and empowers chemical space enrichment. Herein, we propose a data-driven
approach towards drug repurposing in diabetes mellitus by integrating heterogeneous biomedical
data in a unified knowledge graph. Through extensive data mining in public repositories, diabetes-
related multimodal data have been retrieved. Several data analysis techniques were employed to
extract information and define semantic associations, followed by data parsing and, next, descriptive
statistics, regression, and cluster analysis. Biomedical entity recognition and negation detection were
performed by natural language processing. Predefined biological ontologies served as reference
endpoints for class definition upon data integration. Graph analytics were performed, and drug–
drug, protein–protein, drug–protein, and drug–disease interactions were established. A majority
vote-based machine learning framework for the prediction of human cytochrome P450 inhibitors was
also integrated into the proposed enhanced knowledge graph analysis that facilitates data-driven
ranking for drug repurposing candidates in diabetes mellitus. The presented method yields a ranked
list of repurposing candidates.

Keywords: bioinformatics; data mining; machine learning; network analysis; virtual screening; CYP450s

1. Introduction

Diabetes mellitus (DM) is a worldwide fast-growing disease of the endocrine system,
posing as a modern pandemic according to its global prevalence. As the latest data from the
International Diabetes Federation showed, 536.6 million people were affected by diabetes
in 2021, while 6.7 million deaths occurred due to this condition. The number of people
afflicted by diabetes is expected to rise to 783.2 million in 2045 [1]. Diabetes is a metabolic
disorder in which continuous elevated levels of blood glucose occur, a state called hyper-
glycemia. Diabetes can be classified into four main categories based on disease etiology
and pathogenesis [2]. The most prevalent disease phenotypes include type 1 (5–10%) and
type 2 (90–95%) diabetes [2]. Type 1 diabetes is an insulin-dependent autoimmune disorder
that is characterized by pancreatic beta-cell dysfunction, leading to dysregulation of insulin
response and hyperglycemia [3]. Type 2 diabetes, on the other hand, is insulin-independent
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and characterized by insulin resistance, resulting in the excessive function of beta-cells to
maintain normoglycemia [4].

Apart from insulin, 59 antihyperglycemic compounds have FDA approval, of which
36 are administered as monotherapies and 23 as combination therapies [5]. The established
classes of anti-diabetic drugs are Sulfonylureas (SU), Thiazolidinediones (TZD), Biguanide,
Alpha-Glucosidase inhibitors, Dipeptidyl Peptidase-4 (DPP4) inhibitors, Sodium-Glucose
Cotransporter Type 2 (SGLT2) inhibitors, Glucagon-Like Peptide-1 Receptor (GLP1R) ago-
nists and Meglitinides [5]. Yet, several of the existing antihyperglycemic compounds come
with major drawbacks, such as hypoglycemia, low potency, and side effects due to a lack of
target specificity [6]. Therefore, more potent, safe, and highly selective antihyperglycemic
drugs remain an unmet need.

Along with conventional drug discovery, drug repurposing holds promise for the
control of the diabetes epidemic [7]. To this end, several in silico approaches that employ
heterogeneous data sources have been developed, such as machine learning, text mining,
and network analysis [8] or knowledge graph-based drug repurposing. The latter facilitates
a data integration framework for the unified analysis of heterogeneous data, enabling
the utilization of different layers of information [9]. Ghorbanali et al. [10] proposed the
DrugRep-KG method, which employs knowledge graph embedding to represent drugs
and disease associations in a unified latent space towards drug repurposing. Zhu et al. [11]
introduced a similar approach, which includes several drug databases in an integrated
and unified knowledge graph. The drug knowledge graph was then used to predict
drug repurposing candidates through machine learning models. Herein, we propose
a data-driven approach towards drug repurposing in diabetes mellitus by integrating
heterogeneous biomedical data and predictions of in-house machine learning models in
a unified knowledge graph. Molecular docking data were used to enrich the knowledge
graph in question. Overall, the proposed enhanced knowledge graph analysis facilitates a
data-driven ranking for drug repurposing candidates in diabetes mellitus.

2. Materials and Methods
2.1. Databases and Repositories

Heterogenous biomedical data were collected from publicly available repositories.
Information regarding bioactive molecules was gathered from the DrugBank database [12].
An important feature provided by this repository is the mapping of protein targets for each
bioactive molecule with the UniProt database [13]. UniProt served as the main data source
for proteins, providing information about their biological function and structure. Next, the
SureChEMBL platform [14] was used to extract patent data, while datasets from clinical
trials were collected from ClinicalTrials.gov [15]. Additionally, pharmacogenomics data
were extracted from the PharmGKB repository [16]. Another repository used was Omni-
path [17], as it contains information about signaling network interactions, enzyme-substrate
relationships, protein complexes, protein annotations, and intracellular communication.
Complementary to the aforementioned datasets, information about molecular pathways
was retrieved from Reactome [18], while pharmacogenomic data were enriched with data
from the ENSEMBL repository [19]. Additionally, pharmacogenomic recommendations
were obtained from CPIC [20]. Gene sequences were retrieved from RefSeq [21]. Clin-
Var [22] and dbSNP [23] platforms provided information about the clinical significance of
selected genomic variants (missense mutations) and their frequency of occurrence in differ-
ent population groups. The ChEMBL repository was also queried [24] for experimental data
regarding either the pharmacological response of chemical molecules in cellular assays or
experimental binding values to specific protein targets. miRNA–protein interactions were
collected from the mirTarBase platform [25], and TCGA was queried for gene-cancer type
associations [26]. Data on drug responses was retrieved from PharmacoDB [27]. Finally,
data regarding protein–disease associations were obtained from the OpenTargets plat-
form [28]. The databases used, and the layers of information they provided are illustrated
in Figure 1.
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Figure 1. Collection of public repositories mined to extract biomedical data.

2.2. Data Gathering

Data gathering was performed per data source. Data were available a. as download-
able files either through their webpage or FTP connection (e.g., DrugBank, Uniprot), b. via
data scraping (e.g., SureChEMBL) or c. REST APIs (e.g., Ominpath).

2.3. Information Extraction per Data Type

Mining and extensive filtering were performed per data type. For SureChEMBL, the
first step was to parse the data retrieved via scraping and then extract the claims of each
patent. Named entity recognition (NER) was applied to annotate biomedical terms. For
clinical trials, data mining and filtering were applied to extract drug–disease and protein–
disease associations. For pharmacogenomics, data on clinical significance for the missense
mutations located at protein binding sites were prioritized, along with their frequency of
occurrence and pharmacogenomic recommendations. The data collected from OpenTargets
were filtered, focusing only on direct relations. Finally, only drug–protein associations
along with experimental values per assay type survived filtering for ChEMBL-derived data.
The overall workflow for each data type is summarized in Figure 2.
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2.4. Molecular Docking

Molecular interaction data were also generated by molecular docking as an extra
layer of information. In this context, virtual screening through docking simulations was
performed for 7,955 bioactive molecules and 529 protein targets. Autodock vina [29] and
Protein Data Bank (PDB) were used [30].

2.5. Data Integration in an Enhanced Knowledge Graph

The information extracted led to large data volume, complex inter-relationships, and
extreme heterogeneity. Relational databases could not be used as they lack scalability and
cannot handle unstructured data. Hence, a graph database was employed to manage and
query connected data that share semantic relations (Figure 3). For data integration in a
unified knowledge graph, further preprocessing of the extracted information took place.
The knowledge graph in question was further enriched with cytochrome P450 toxicity
predictions [31]. Additionally, docking scores were included after normalization [32].
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2.6. Graph-Based Machine Learning

Link prediction employing machine learning models was applied based on the subnet-
work of drug–protein associations. The aim was to predict new relationships between these
two entities of the graph in question, taking into account already-known relationships. To this
end, the subnetwork of interest was extracted from the knowledge graph, and drug–protein
pairs were labeled by assigning pairs with known interactions to the positive class, whereas
the negative class included those pairs devoid of drug–protein associations as indicated by
experimental values (IC50, EC50, and Ki). Next, feature extraction was performed based
on local statistical measurements of the distances between drug–protein pairs using the
Fast Random Projection (FastRP) method [33]. Of note, the extracted measurements char-
acterized each node and not the pair. Therefore, the next step was to combine the pairs
by multiplying the feature vectors of each node. By importing the drug–protein pairs and
their features, classifiers were designed and trained to distinguish between the connected
and non-connected pairs. Data splitting took place in a 70:30 ratio for training and test
sets. The training data set was used to design three classifiers (Random Forest, Support
Vector Machine, and k–nearest neighbors), for which the optimal parameters were found
through 10-fold cross-validation. The optimal models of each classifier were tested on the
external test set. The process of splitting the data, designing, and testing the classifiers was
performed ten times.

3. Results
3.1. Link Prediction through Machine Learning

The machine learning models developed to perform link prediction for the drug–protein
pairs considered were evaluated through 10-fold cross-validation and tested in an external
test set. The mean performance of the models employing the FastRP embedding method is
provided in Table 1.

Table 1. Machine learning models and their mean performance for ten iterations.

Metric
10-Fold Cross-Validation External Test Set

RF SVM KNN RF SVM KNN

Accuracy 95.23 96.62 95.89 95.12 96.68 95.89
Precision 97.32 98.91 97.76 97.17 98.94 97.71

Recall 85.75 86.26 87.42 85.86 86.47 87.68
MCC 0.83 0.88 0.86 0.83 0.88 0.86
AUC 0.96 0.97 0.97 0.96 0.97 0.97

MCC, Matthews correlation coefficient; AUC, Area Under the Curve; RF, Random Forest; SVM, Support Vector
Machine; KNN, k–nearest neighbors.

As summarized in Table 1, metrics indicate that the models a. generalize well enough,
as they achieve similar performance in the external test set and b. discriminate the drug–
protein pairs that are linked from those that are not. The optimal parameters selected for
each classifier through cross-validation were the following:

• Random Forest: 500 trees (ntrees) with 65 features sampled during splitting at each
node (mtry).

• Support Vector Machines: radial kernel basis function as kernel, sigma equal to 0.0043,
and the cost of constraints violation (C) set to 1.

• k–Nearest Neighbors: 9 neighbors (k).

3.2. Molecular Docking Analysis for DPP-4 Inhibitors

To identify dipeptidyl peptidase-4 (DPP-4) inhibitors, docking results were analyzed
for drug repurposing candidates. A simple condition was set to identify the most potent
inhibitors based on which the docking score of the new inhibitor should be better than the
docking score of the reference inhibitor of DPP-4. The list of drug repurposing candidates
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is depicted in Figure 4 as a histogram of their docking scores; 15 compounds were found to
be more potent DPP-4 inhibitors with a normalized docking score lower than −2.05, among
392 test-compounds that had a score lower than −1.9 (reference score).
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3.3. Identifying Drug Repurposing Candidates

The top-15 drug repurposing candidates were filtered based on a. cytochrome P450
inhibition, b. structural similarity to known DPP4 inhibitors (Tanimoto score), c. data from
clinical trials, d. patent data and pharmacogenomics and led to top-four drug repurposing
candidates. The latter are ranked by their docking scores, their probability of serving as
DPP-4 ligands according to the SVM classifier, and their Tanimoto scores.

4. Discussion

Herein, an enhanced knowledge graph was designed for a holistic view, processing,
and curation of biomedical knowledge coupled to a. structural information generated by
molecular docking and b. machine learning models. Overall, such a design allowed for
faster and better filtering of drug repurposing candidates in diabetes mellitus after building
upon the efficacy, safety, and selectivity ranking for test compounds. DPP-4 served as a
paradigm, yet our strategy is robust and easy to adapt.

5. Conclusions

The enhanced knowledge graph analysis presented herein facilitates data-driven
ranking for drug repurposing candidates in diabetes mellitus. This is a unified system for
integrating multi-modal heterogeneous data for informed-drug repurposing. DPP-4 served
as a paradigm, resulting in top-four candidates. Overall, this is a robust adaptive strategy.
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