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Abstract: Cancer remains a pervasive and formidable disease within modern societies, necessitating
the utilization of advanced techniques in both diagnosis and therapy. Molecular biology has emerged
as a crucial tool in deciphering the underlying biological mechanisms that contribute to various
types of cancer. Notably, single-cell sequencing has garnered significant attention as a state-of-
the-art method for profiling gene expression in individual cells, unveiling previously concealed
mechanisms and biological phenomena. With the abundance of single-cell datasets available, there
is a pressing need to integrate related datasets into larger ones to enhance our understanding of
biological processes and augment predictive capabilities. In this study, we investigated the impact
of gene selection, achieved through the implementation of feature selection techniques, on the
integration of single-cell datasets. By systematically exploring the effects of gene selection, we aim to
enhance the integration process, leading to improved biological insights and enhanced predictive
power. The proposed method aims to enhance two cutting-edge data integration methodologies
for single-cell RNA sequencing (scRNA-seq). The method utilizes a strategy that combines two
key components: a statistical approach to isolate the high variability in gene expression across cells
or samples and a feature selection strategy based on XgBoost to keep genes that are important for
distinguishing among healthy and cancerous cells.

Keywords: cancer; data integration; feature selection; scRNA-seq; machine learning

1. Introduction

Single-cell RNA sequencing (scRNA-seq) [1] is an advanced next-generation sequenc-
ing approach designed for the transcriptomic analysis of individual cells within given
cellular populations. This technique affords a more nuanced comprehension of gene ex-
pression at the single-cell level, offering insights into the extent of their expression and
the differential patterns that exist among cells within the same population. Put differently,
scRNA-seq unveils unexpected degrees of heterogeneity in what may initially appear as
homogeneous cell populations. Heterogeneity, in this context, denotes variances between
cells concerning their function and behavior, and, correspondingly, their gene expression
patterns. Leveraging this technology, intricate disease mechanisms, such as those observed
in various types of cancer, can be deciphered, paving the way for innovative diagnostic
strategies and potentially novel therapeutic interventions [2]. As a case in point, Immu-
can [3] serves as a digital repository, housing 78 publicly accessible scRNA-seq datasets
spanning a spectrum of cancers. Such resources empower researchers and clinicians alike
to delve deeper into the genomic intricacies of malignancies, potentially fostering the
development of medical decision-support systems to fortify clinical diagnostic prowess.
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It should be noted that single-cell datasets typically encompass a vast array of features
(genes). This characteristic not only complicates the analytical process but also imposes sig-
nificant computational demands [4]. This complexity of features can precipitate the ’curse
of dimensionality’ [5], where an extremely large number of features leads to the worsening
performance of machine learning models. Fortunately, this issue can often be mitigated
through the application of feature selection methodologies [6]. These techniques facilitate
the retention of only the most informative features or genes pertinent to the biological
phenomena under investigation, while extraneous or redundant ones are discarded.

In the context of single-cell sequencing, data integration is a term used to describe
techniques that are being used in order to merge data from multiple sources into a single
cohesive dataset in order to enhance the depth and resolution of the data and gain a
more robust identification of trends and patterns [1]. This process, however, is hindered
by batch effects. Batch effects is a term used to describe systematic differences between
the individual datasets that we want to merge together. They are a result of technical
differences that take place during the sequencing process and they mask true biological
differences between cells, thus confounding research and leading to either very complex
or even false results. Thus, the goal of data integration is to account for these technical
variations and eliminate them as much as possible in order to mix batches/datasets in such
a way that cells that correspond to the same or identical cell type(s) will be clustered closely
together [7].

Here, we present a novel hybrid feature selection (HFS) scheme for single-cell datasets,
which synergistically combines a statistical testing approach with a machine learning-based
feature importance criterion. We explore our methodology’s implications on single-cell data
integration techniques to examine its potential modulatory effects on integration outcomes,
thereby offering a deeper understanding of its performance and efficacy. By leveraging this
unique perspective, we aim to deliniate the wider impacts and potential advancements
that such methodologies could usher in for the complex task of single-cell data integration
and possibly other related single-cell sequencing analysis pipelines.

2. Related Work

In recent years, a plethora of algorithms and methodologies have been advanced
to address data integration and batch effect correction challenges. Notably, while the
primary focus of such algorithms is the identification and mitigation of batch effects,
many techniques first perform some form of dimensionality reduction. This step aims
to enhance the signal-to-noise ratio, subsequently optimizing performance by facilitating
batch correction within the latent space [1].

Originating from the realm of bulk transcriptomics, ComBat serves as a global model.
This algorithm predicates its function on the presumption that batch effects manifest as
uniform (either additive or multiplicative) influences across all cells [8].

Specifically designed for single-cell data, linear embedding models emerged as the
most popular category of batch correction techniques. These strategies often employ a
modified singular value decomposition (SVD) for data embedding and then identify local
cell clusters, termed mutual nearest neighbors, across batches within this embedded space.
By doing so, they rectify batch effects through a locally adaptive, non-linear approach.
Renowned methods in this category include Scanorama [9], Harmony [10], and Seurat [11],
among others.

Unlike other methods, BBKNN [12] utilizes a graph-based methodology for single-cell
data integration. It deploys a nearest neighbor graph representing each batch/dataset.
Batch effects are rectified by intentionally forcing connections between cells from varying
batches, followed by pruning the connections to accommodate cell type variations.

Deep learning (DL) approaches have recently emerged as intricate techniques for
batch effect alleviation, typically demanding substantial data for optimal results. These
approaches, predominantly rooted in autoencoder networks, either condition their dimen-
sionality reduction on batch variables using conditional variational autoencoders (CVAEs)
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or apply a locally linear correction in the embedded domain. For example, SCALEX [13]
harnesses a variational autoencoder to discern and amend batch effects. This model is
composed of an encoder, which is batch-independent and extracts biologically pertinent
latent features, and a decoder, which leverages batch data to reconstruct original data
from these latent attributes using a domain-specific batch normalization layer (DSBN).
Additionally, SCALEX implements a mini-batch methodology, uniformly sampling from
all batches and adjusting for any deviation through a batch normalization layer. Other
DL-inspired techniques in this domain encompass scVI [14], scANVI [15], and scGen [16].

While many single-cell analyses employ rudimentary gene selection steps often em-
bedded in computational libraries such as Seurat [11] and Scanpy [17], it is noteworthy that,
to our understanding, none capitalize on a refined feature selection pipeline exclusively
focused on preserving genes pivotal to the underlying biological study. Our research en-
deavors to evaluate the potential impact of a refined, hybrid feature selection methodology
on single-cell data integration pipelines.

3. Methodology

In light of prior research, which has unveiled that among the thousands of genes
found in single-cell sequencing datasets, merely a few hundred significantly influence the
specific biological phenomena under analysis [18,19], we introduce a novel Hybrid Feature
Selection (HFS) strategy tailored for scRNA-seq datasets. This methodology is underpinned
by two pivotal components: a statistical test pinpointing genes exhibiting pronounced
variability within the dataset, and a machine learning feature importance criterion rooted
in tree-based algorithms, specifically the gain variable importance metric of XgBoost, as
shown in Figure 1. The latter quantifies the relative significance of each feature to the model
by aggregating the contributions of said feature across all trees. A feature’s elevated metric
value, relative to another, underscores its paramount importance in generating accurate
predictions relevant to the specific biological condition under examination.

Figure 1. Schematic overview of the hybrid feature selection pipeline. The pipeline initiates with a
concatenated single-cell dataset comprising n individual datasets. Feature selection is conducted
using XgBoost’s gain-based variable importance criterion. The top variably expressed genes are
retained to create a refined dataset, which is then subjected to a data integration algorithm for batch
effect correction.

For a given concatenated scRNA-seq dataset encompassing n distinct batches, our
approach initially leverages XGBoost’s gain variable importance metric [20] in order to
identify genes that play a pivotal role in distinguishing control from case samples/cells.
Through this process, only genes with non-zero importance scores are kept.

In the context of tree-based machine learning algorithms, gain denotes the augmen-
tation in classification accuracy that is attributable to the integration of a specific feature
within the branches it impacts. The foundational concept is that, prior to the introduc-
tion of a new partition based on feature X, the existing branch contains samples that are
inaccurately classified. The introduction of this partition yields two derivative branches,
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each of which exhibits an elevated level of classification accuracy. Specifically, one of the
emergent branches provides a more accurate condition for categorizing an observation
as belonging to a specific class, while the opposing branch provides a counter-condition,
thereby enhancing the overall predictive ability of the classifier. XgBoost’s gain metric is
thus calculated as:

G =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ

This formula can be decomposed as follows:

• G2
L

HL+λ : score of the new leftmost leaf.

• G2
R

HR+λ : score of the new rightmost leaf.

• (GL+GR)
2

HL+HR+λ : score of the original leaf.
• γ: regularization term.

Subsequently, the number of important genes is further reduced by only keeping
the genes that exhibit the highest degree of variability among the n batches as deter-
mined by the aforementioned statistical test [21]. The mean and a measure of dispersion
(variance/mean) are computed for each gene across the entire single-cell dataset. Genes
were subsequently categorized into 20 bins according to their average expression levels.
Within each bin, the dispersion measures for all genes are z-normalized to isolate those
exhibiting high variability, even when compared with genes of comparable average ex-
pression. Z-scores are finally employed to identify genes exhibiting significant variability.
Z-scores are calculated as follows:

Z =
(V − µ)

σ

This formula can be decomposed as follows:

• Z: Z-score.
• V: observed variance.
• µ: expected variance given the mean expression.
• σ: standard deviation of the variance.

From this process, a streamlined version of the original dataset is obtained, retaining
only a select few hundred genes of paramount significance to the biological problem at
hand. This refined dataset can be utilized for data integration/batch effect correction using
any kind of single-cell data integration algorithm.

4. Experimental Study and Results

In our study, we procured three lung cancer datasets from the ImmuCan database [3].
As an initial step, these individual datasets were merged into a unified entity, retaining
only the genes common to all. This fused dataset encompassed a total of 45,228 cells and
8687 genes.

Initially, the 8687 genes were ranked based on XGBoost’s gain feature importance crite-
rion, considering their role in differentiating between healthy and cancerous cells. Through
this process, we retained 2024 genes, all of which had non-zero gain values. From these,
the top 500 “disease important” genes exhibiting the highest variability across all three
batches/datasets were retained through the use of scanpy’s highly_variable_genes function.

Our hybrid feature selection (HFS) methodology yielded a variant of the dataset com-
prising 500 genes in total. This refined dataset, along with the original one encompassing
8687 genes, was used to perform data integration/batch effect correction. We utilized
two well-established algorithms, Harmony [10] and Scanorama [9], to perform this task,
and subsequently compared the results using integration evaluation metrics and UMAP
data visualization [22].
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In both Figures 2 and 3, the leftmost plot illustrates the original concatenated dataset
encompassing all genes (8687 in total). The four rightmost plots showcase the outcome
of data integration using Scanorama and Harmony. The two plots at the top showcase
the integration results while retaining the complete gene count (8687). The two plots
at the bottom demonstrate the integration results derived from the streamlined dataset
which was procured through the use of our feature selection pipeline. For clarity, these
visualizations are initially colored based on the specific batches or datasets being integrated,
and, subsequently, by the distinct cell types present in the data. The ensuing two figures
specifically depict outcomes pre and post the application of single-cell integration via
Harmony and Scanorama.

Concatenated Data

Figure 2. Comparison of 2D UMAP visualization. Points represent cell samples and each color
represents a different batch/dataset. We see that, through the use of our HFS scheme, both scRNA-
seq integration algorithms (Scanorama and Harmony) managed to mix between batches in a more
efficient way.

From the UMAP visualizations, it becomes clear that prior to integration distinct
batches are separated in such a manner that cells of analogous cell types are not congruently
clustered together. When employing Harmony on the “full gene” (8687 genes) dataset,
there is a modest improvement in batch mixing; however, results remain suboptimal.
Remarkably, upon using Harmony with the streamlined dataset comprising 500 genes,
there is a marked enhancement in batch integration, leading to more cohesive clusters of
cells sharing identical or biologically related cell types. Comparable trends in results were
observed when integration was executed using Scanorama.

To bolster the validity of our findings, we incorporated two salient data integration
evaluation metrics from the SCIB (Single-Cell Integration Benchmark) framework: namely,
kBET [23] and silhouette batch [7].

kBET measures the bias associated with a batch variable within the kNN graph. More
precisely, kBET is expressed as the average rejection rate arising from Chi-squared tests,
comparing local and global batch label distributions. Notably, a lower kBET value signifies
enhanced batch mixing. For clarity, it is pertinent to mention that the default scaling of the
kBET score ranges between 0 and 1, with higher scores representing superior batch mixing.
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Concatenated Data

Figure 3. Comparison of 2D UMAP visualization. Points represent cell samples and each color
represents a cell type. We see that, through the use of our HFS scheme, both scRNA-seq integration
algorithms (Scanorama and Harmony) managed to account for batch effects in a more efficient way
and cluster cells of the same or closely corresponding cell types closer together.

Conversely, the silhouette batch metric evaluates the silhouette width of a specified
batch. The metric assumes that a silhouette width nearing 0 typifies an optimal overlap
between batches. As such, the absolute value of the silhouette width serves as a measure
for batch mixing efficacy. In its scaled version, which is the default option, the absolute
Average Silhouette Width (ASW) for each group is subtracted by one prior to averaging.
This ensures that a score of 0 corresponds to a suboptimal label depiction, whereas a score
of 1 represents optimal label representation. The results of these two integration evaluation
metrics are summarized in Table 1.

Table 1. Integration evaluation metrics results

Dataset kbet Silhouette Batch

Concatenated data 0.128 0.62

Scanorama 0.193 0.78
HFS Scanorama 0.258 0.86

Harmony 0.334 0.84
HFS Harmony 0.423 0.90

It is apparent, once more, that both single-cell integration algorithms yielded superior
performance on the streamlined dataset, a product of our feature selection pipeline. When
combining these quantitative results with the aforementioned visual interpretations, there
emerges a compelling indication that feature selection has a beneficial impact on data
integration and batch effect rectification within single-cell sequencing datasets.

5. Conclusions

In our study, we devised a hybrid feature selection methodology tailored for single-
cell RNA-sequencing data. This approach combined a statistical measure—capturing
high variability in gene expression—and the variable importance criterion from a machine
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learning model, specifically the gain metric from an XGBoost classifier. When evaluating the
impact of this refined feature selection approach on data integration, we observed a marked
enhancement in the subsequent batch effect correction using two renowned algorithms,
Scanorama and Harmony. Our findings not only underscore the efficacy of sophisticated
feature selection strategies in data integration but also emphasize their potential significance
in analyzing datasets linked to intricate and widely studied biological conditions, such as
cancer. As the biomedical research community continues its relentless pursuit of precision
medicine, such methodologies might prove instrumental in unearthing nuanced insights
from intricate datasets, potentially paving the way for groundbreaking discoveries.
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