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Abstract: In time series analyses, covariance modeling is an essential part of stochastic methods
such as prediction or filtering. For practical use, general families of covariance functions with large
flexibilities are necessary to model complex correlations structures such as negative correlations. Thus,
families of covariance functions should be as versatile as possible by including a high variety of basis
functions. Another drawback of some common covariance models is that they can be parameterized
in a way such that they do not allow all parameters to vary. In this work, we elaborate on the affiliation
of several established covariance functions such as exponential, Matérn-type, and damped oscillating
functions to the general class of covariance functions defined by autoregressive moving average
(ARMA) processes. Furthermore, we present advanced limit cases that also belong to this class and
enable a higher variability of the shape parameters and, consequently, the representable covariance
functions. For prediction tasks in applications with spatial data, the covariance function must be
positive semi-definite in the respective domain. We provide conditions for the shape parameters
that need to be fulfilled for positive semi-definiteness of the covariance function in higher input
dimensions.

Keywords: ARMA processes; covariance function; stochastic modeling; time series analysis; Matérn
covariance function; positive definiteness

1. Introduction and Related Work

Signal covariance modeling is an important part of stochastic methods [1]. In covari-
ance modeling, the choice of the type of covariance function is commonly separated from
the actual estimation of its shape parameters. Thus, the estimated covariance model quite
strongly depends on the assessed basis functions. From this standpoint, it is desirable to
have a very general class of covariance functions that can represent very different shapes
with a single functional model and thus includes a large set of possible basis functions.
A drop towards negative correlations, i.e., the so-called hole effect [2], is a widespread
phenomenon in real-world datasets.

The Matérn family of covariance functions [3] finds application in many fields such
as machine learning [4], environmental sciences, and geostatistics [5,6]. Simultaneously, a
very similar class is known as Markov models, e.g., [6–8]. For instance, the combination
of a degree-two polynomial and an exponential function is known as the third-order
Markov model.

In geodetic time series analysis, many standard covariance models have been intro-
duced early. For instance, the authors of [9] provided an application of a simple case of
the Matérn covariance function to describe the stochastics of the gravity field. The authors
of [10] and [11] introduced second- and third-order Markov models in the geodetic con-
text; see also [12]. The author of [13] used the exponentially damped cosine in a geodetic
application. Later, the second-order Markov model was applied to altimetry data [14,15].

Eng. Proc. 2021, 5, 37. https://doi.org/10.3390/engproc2021005037 https://www.mdpi.com/journal/engproc

https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-5192-6629
https://orcid.org/0000-0002-7647-4515
https://orcid.org/0000-0002-1112-8910
https://orcid.org/0000-0002-3522-3146
https://doi.org/10.3390/engproc2021005037
https://doi.org/10.3390/engproc2021005037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/engproc2021005037
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021005037?type=check_update&version=2


Eng. Proc. 2021, 5, 37 2 of 9

On the other hand, Markov models are also referenced by different names. e.g., the
respective models can be derived from Radon transforms of the exponential model, cf. [16]
(p. 85). In the literature, these models are also denoted as second-order autoregressive
(SOAR) models and third-order autoregressive (TOAR) models; see e.g., [8,17–21]. Despite
the uncertain terminology in the literature, we distinguish between second-order Gauss–
Markov (SOGM) models as in [22,23] and second-order Markov (SOM) models [7,8,10],
whereas both models share the property of being second-order autoregressive (SOAR) or
second-order ARMA models.

In [23], it was shown that the covariance function of AR and ARMA processes with
unique poles corresponds to a sum of SOGM process covariance functions, which are
a combination of an exponential function and cosine and sine terms. However, if the
autoregressive poles are repeated, the correspondence to SOGM models does not hold
anymore. Instead, a higher pole-multiplicity introduces polynomials as basis functions
into the family of covariance functions. This more general family is commonly related back
to [24] (p. 543) where a family of covariance functions constructed by polynomial functions
and exponential damping terms is derived from ARMA models. Whilst the family is mostly
introduced in the literature only for real poles, it has a complete set of covariance functions
of oscillating type, which is discussed in this work. Examples of this general class appear
very sparse in the literature, e.g., in [2] or in a short note on oscillatory Matérn covariance
functions in [25] (Section 2.3.3) but never the complete variety of this class. In this work,
we merge many known covariance functions to a combined family of covariance functions,
namely the ARMA models.

Next to the variety of basis functions involved in the construction of a covariance
function, it is essential for the function’s flexibility to allow all shape parameters to vary. By
this requirement, one can define a family of covariance function, e.g., the class of Markov
models. The reference with the most complete variety of functions belonging to this class
is [5] (known as Buell’s function of index 3; see also [6]) who provides that model with
enhanced variability of parameters, which is the general idea in this paper.

In this work, these two extensions to the standard covariance models are introduced
as part of the family of non-repeated and repeated poles ARMA models. Hence, starting
from the Matérn-type covariance models, it is intended to provide both a variety of basis
functions and variability of the shape parameters to achieve the most general family of
covariance functions.

Another aspect is the necessity of covariance functions being positive semi-definite.
For applications with data in higher dimensions, e.g., spatial data, the reduction to a one-
dimensional distance-like norm (e.g., Euclidean) does not guarantee positive definiteness
of the covariance function in the higher dimension. Instead, the Bochner theorem extends
to the Hankel transform being positive [1,26]. We derived the conditions among the shape
parameters that ensure positive semi-definiteness of the covariance function in higher
input dimensions.

2. The Family of Non-Repeated Poles ARMA Models

Reference [23] presents elegant parametrizations and fitting procedures for the family
of covariance functions defined by autoregressive moving average (ARMA) models. The
family is based on covariance functions defined by SOGM processes given in one of the
two following parametrizations:

γ(τ) =
σ2

cos(η)
e−c τ cos(a τ − η) with a, c ≥ 0 and |η| < π/2 (1)

=
σ2

cos(η)
e−ζω0τ cos

(√
1− ζ2 ω0 τ − η

)
with 0 ≤ ζ ≤ 1, ω0 > 0 . (2)
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In more detail, the interpolating function to the discrete covariances of an AR(p) pro-
cess is given by the following finite weighted sum of exponentiated (unique) autoregressive
poles p1, p2, . . . , pp:

γ(τ) = A1 pτ
1 + A2 pτ

2 + . . . + Ap pτ
p with pi ∈ C, Ai ∈ C , (3)

cf. [27] (Equation (5.2.44)) and [28] (Equation (3.5.44)), which can be mathematically con-
verted to the representation of Equation (2); see [23]. Equation (3) corresponds to either a
pure AR(p) process or an ARMA(p,q) process, depending on whether the weights Ai are
purely, i.e., uniquely, determined by the autoregressive poles pi. The two-step approach
in [23] starts with an estimation of the autoregressive process parameter and concludes
with the fitting of weighting coefficients of the interpolating function.

Positive Definiteness in Higher Dimensions

The application in spatial domains requires positive semi-definiteness of the covari-
ance function in higher dimensions Rd, which is derived here.

Starting from the simple exponentially damped cosine, e.g., [16] (p. 92), the SOGM
covariance function is a generalization with three parameters, i.e., additional phase, see [23]
for details on the parametrization. Similar to [29] (p. 26), positive semi-definiteness con-
straints on the parameters can be followed from [30] and amount to

η ≥ −π

2
+ acos(ζ) · d (4)

as an additional condition to the requirement η ≤ asin(ζ), cf. [23]. The permissible area
of parameters is illustrated in Figure 1a and is visibly restricted more and more with
increasing dimension.

d = 1 d = 2 d = 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(a)

d = 1 d = 2 d = 3

-2 -1 0 1
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1
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(b)

Figure 1. Permissible areas for parameters. For each dimension, the permissible area becomes a
subset of that of the lower dimension. (a) Permissible areas of the parameters ζ and η in different
dimensions 1 to 3. (b) Permissible areas of the weights c1 and c2 in different dimensions 1 to 3 shown
for fixed parameter c = 1.

3. Generalization to Repeated Poles ARMA Models

Prior to providing the methodology of repeated poles ARMA processes, we introduce
the basics of the Matérn family of covariance functions. The Matérn family of covariance
functions can be parameterized in a way such that similarities to the ARMA models
become clear.

3.1. The Half-Integer Matérn Covariance Function

The Matérn class of covariance Functions [3,4] defines a covariance functions with the
two shape parameters c (scale of correlation length) and order ν. The Matérn covariance
function is defined as
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γMat,ν(τ) = σ2 21−ν (c τ)ν

Γ(ν)
Kν(c τ) (5)

and, in the case of half-integers ν, simplifies to a combination of a polynomial of degree
p=ν−1/2 and an exponential function [4,6]. For the first four half-integers, we have

γMat,1/2(τ) = σ2 e−c τ , γMat,3/2(τ) = σ2(1 + c τ) e−c τ ,

γMat,5/2(τ) = σ2
(

1 + c τ +
c2

3
τ2
)

e−c τ and

γMat,7/2(τ) = σ2
(

1 + c τ +
2c2

5
τ2 +

c3

15
τ3
)

e−c τ .

(6)

Note that the attenuation factor c also builds the coefficients of the polynomial.

3.2. Repeated Poles ARMA Models

Equation (3) holds only for the simple case assuming that the autoregressive process
has distinct roots. When there are repeated real (positive or negative) poles or repeated
complex conjugate poles, special cases have to be considered. Derived from the solution
to the difference equation of the autoregressive relation for repeated poles, cf. e.g., [31]
(Chap. 3.7), the required basis functions are summarized as one of the following cases of
covariance sequences γk at discrete lags k, either

γk =
(

c0 + c1 k + . . . + cm−1 km−1
)

p̄k (7)

for p̄ := p1 = p2 = . . . = pm ∈ R+, or

γk =
(

c0 + c1 k + . . . + cm−1 km−1
)
| p̄|k cos(πk), (8)

for the case p̄ := p1= p2= . . .= pm ∈ R−, or finally

γk =
(

c0 + c1 k + . . . + cl−1 kl−1
)
| p̄|k cos(ak−η) (9)

for p̄ := p1 = . . . = pl = p∗l+1 = . . . = p∗2l ∈ C. m represents the multiplicity of real roots, l
represents the pairwise complex conjugate roots, and cj is the weights. As a result, these
formulae correspond to multiplication and exponentiation of complex-valued weights
Ai and poles p̄ similar to Equation (3) and with the same correspondences c =−ln(| p̄|),
a= |arg( p̄)|, and |ηi|= |arg(Ai)|; see [23] (Sections 4.3 and 5.1). However, for repeated poles,
e.g., as visible from Equation (7), the summation is performed in the following way

γk = A1 p̄k + A2 k p̄k + . . . + Am km−1 p̄k . (10)

Although the solution to the difference equation holds for discrete γk, we pursue a
reinterpretation as a continuous covariance function γ(τ); see [23] (Section 4.3), and use the
mathematical elegance of Equation (10) also for the analytical covariance function defined
by AR or ARMA models.

From Equation (7), it is evident now that the Matérn covariance functions of or-
der ν= p +1/2 correspond to ARMA models with m = p repeated real poles p̄ = e−c.
As known, from the Matérn family, with increasing order ν, the squared-exponential
(Gauss-type) covariance function is asymptotically reached. Hence, with increasing pole
multiplicity, an increasingly lower slope at the origin is realized.
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3.3. Bounds for the Polynomial Coefficients of Markov Models

For the purpose of increasing the flexibility, we adopt the half-integer Matérn covari-
ance function but with arbitrary polynomial coefficients. This approach is followed in [5]
with his function of index 3; see also [6]. Similar to [5], we intend to construct a general
model with arbitrary weights cj

γ(τ) = σ2
(

1 + c1 τ + c2 τ2 + . . . + cm−1 τm−1
)

e−c τ , (11)

e.g., with third-order γTOM(τ) = σ2(1 + c1 τ + c2 τ2) e−c τ , which we denote as a third-
order Markov (TOM) model.

As known from [23] (Section 5), allowing arbitrary weights between the basis functions
creates a correspondence to ARMA models, i.e., introducing a moving average part. Hence,
the covariance functions of index 3 of [5] as well as γTOM(τ) also have triple real poles, but
they correspond to ARMA(3,q) processes with triple real poles but with unknown order of
the moving average part here.

Note that, due to the fixed polynomial coefficients, the Matérn covariance functions
determined by c are automatically positive definite for c > 0, which makes them simple
and easy to handle. However, Markov models with adjustable coefficients exhibit greater
flexibility, and they are viable for practical use if the bounds of the coefficients for positive
(semi)-definiteness are known.

As in [6] (Equation (14)), we can construct the general model with arbitrary weights c1
and c2 from a combination of the half-integer Matérn models Equation (6). The correspon-
dence is

(
1 + c1 τ + c2 τ2

)
e−c τ =

(
1− c1

c

)
γMat,1/2(τ)+

(
c1

c
− 3c2

c2

)
γMat,3/2(τ) +

3c2

c2 γMat,5/2(τ) .
(12)

In the d-dimensional space, the general Matérn covariance function has the
Fourier transform

F(s) =
Γ
(

d
2 + ν

)
c2ν

Γ(ν)π−
d
2 (c2 + s2)

−( d
2 +ν)

, (13)

cf. [32] (Equation (4.130)), which, weighted as in Equation (12) and simplified (cf. [6]), yields

F(s) = Γ(1/2+d/2)
Γ(1/2)πd/2 (c2+s2)5/2+d/2

( (
1− c1

c
)

c
(
c2 + s2)2

+
(

c1
c − 3c2

c2

)
(1 + d) c3 (

c2 + s2) +
(

c2
c2

)
(1 + d)(3 + d) c5

)
.

(14)

From this, bounds for the non-negativity conditions can be derived. In detail, c2 can
lie within the bounds defined by the functions

c2 =
c(2cd + 6c + c1d− 3c1)

9(d + 1)
± 2c

√
(c1 − c)(cd + 3c + 2c1d)(d + 3)

9(d + 1)
, (15)

which form the shape of an ellipsis added to a straight line. If c1 is larger than c1 ≥ −c(2d +
3)/(d(d + 2)), the domain extends to the straight line lower bound c2 ≥ −(c(c + c1d))/
(d(d + 1)) and up to c1 < c and c2 ≤ c2/3; see Figure 1b.



Eng. Proc. 2021, 5, 37 6 of 9

3.4. Oscillatory Repeated Poles ARMA Models

It is intuitive to combine the Matérn covariance function with an oscillating function
in order to create a more versatile function; see [25] (Section 2.3.3). Hence, by multiplying
Equation (11) with a cosine of frequency a and phase η, we have the following:

γ(τ) = σ2
(

1 + c1 τ + c2 τ2 + . . . + cl−1 τl−1
)

e−c τ cos(a τ − η) (16)

We define the general class of repeated poles ARMA covariance functions with
l=ν +1/2 times repeated complex-conjugate pairs of poles given by

pi,i+l = e−c(cos(a)± i sin(a)) (17)

and thus autoregressive order p=2l. Again, the moving average parameters, i.e., also the
dependence of weights cj on poles and zeros of the ARMA process, are not derived here,
cf. [23].

When combining the covariance models of Sections 2 and 3.3, the conditions of positive
definiteness are the joint requirements of both types, i.e., Figure 1a,b.

4. Application to Altimetry Data: A Demonstration

The following empirical covariance function of a two-dimensional geodetic application
shall serve as a small example to demonstrate the necessity of different covariance functions
presented in this work. Here, we interpret a time series of sea level anomalies (SLA)
along the altimeter track as a stationary stochastic field in planar approximation, i.e., two-
dimensional domain. To obtain SLA, sea surface heights observed by the Envisat satellite
launched and operated from 2002 until 2012 by the European Space Agency were reduced
by a long-term mean sea surface model (in this case, CNES-CLS11, [33]) interpolated along
the satellites ground track. For the demonstration example, we extracted a subset of 10,905
observations in a local area of the North Atlantic ocean of cycle 13 (13 January 2003 to 17
February 2003); see Figure 2. We computed empirical estimates of the isotropic covariance
function averaged for equidistant lags (∆τ = 0.2°) and by using the biased estimator (see
the black dots in Figure 3).
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Figure 2. Subset of the SLA data used for the example.
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Figure 3. Functions of the type in Equation (11) with different orders fitted to the empirical covari-
ances.

For Figure 4, we fit functions of the type in Equation (16) with different orders to the
empirical covariances. These ARMA models do not experience an improvement from the
higher pole multiplicity because the oscillatory nature of the complex poles ARMA model
already nicely captures the hole effect. The higher-order models slightly improve the very
long-range correlations.
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Figure 4. Functions of the type in Equation (16) with different orders fitted to the empirical covari-
ances.

For demonstration purposes, different types of covariance functions belonging to
the family of (repeated pole) ARMA models are fitted to the empirical estimates gk of
the covariances γk from lag k = 1 up to k = 34 using non-closed-form solvers. We used
the GNU Octave’s nonlinear minimization routine fmincon, cf. [34] and implemented a
constrained least squares fitting.

In a first plot, we fit repeated real pole ARMA models, i.e., Equation (11), of orders
p = 2, 3, 4 and 5. These correspond to linear combinations of Matérn covariance functions,
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where some Matérn functions can even be subtracted in the combination. The number of
fitted parameters, i.e., σ, c, and cj, are 3, 4, 5, and 6. The order q of the moving average part
is not determined here. All results are estimated to be positive semi-definite in R2.

Figure 3 shows that the polynomial component of the covariance function can success-
fully capture the negative correlations. The quality of fit gets better with increasing order
and is sufficient for the fifth-order model. We are aware that the nugget γ(0)− g0 (white
noise variance component) is quite different for the estimated models, but that is because
we did not restrict it by a priori knowledge.

5. Summary and Conclusions

The example demonstrates that relatively complex correlations structures can also be
captured by simple covariance models such as Markov models. Enhanced flexibility is
achieved by adjustable polynomial coefficients, which makes them favorable to the Matérn
covariance function, especially for modeling negative correlations as in the example. The
underlying methodology of ARMA processes builds the general family for all of these
covariance functions and thus also holds out the prospect of suited optimization methods
such as the Yule–Walker equations, cf. [23].

In addition, we provide bounds for all parameters of the ARMA covariance models in
order to ensure positive semi-definiteness in the respective domain of the data. In general,
this work demonstrates the necessity for a large variety of basis functions collected in a
family of covariance functions as well as suited fitting procedures. Tailored optimization
problems for the repeated poles ARMA models are still an open research field.
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13. Vyskočil, V. On the Covariance and Structure Functions of the Anomalous Gravity Field. Stud. Geophys. Geod. 1970, 14, 174–177.

[CrossRef]
14. Andersen, O.B.; Knudsen, P. Global Marine Gravity Field from the ERS-1 and Geosat Geodetic Mission Altimetry. J. Geophys. Res.

Ocean. 1998, 103, 8129–8137. [CrossRef]
15. Andersen, O.B. Marine Gravity and Geoid from Satellite Altimetry. In Geoid Determination: Theory and Methods; Sansò, F., Sideris,

M.G., Eds.; Lecture Notes in Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 401–451. [CrossRef]
16. Chilès, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; Wiley Series in Probability and Statistics; John Wiley & Sons:

Hoboken, NJ, USA, 1999. [CrossRef]
17. Julian, P.R.; Thiébaux, H.J. On Some Properties of Correlation Functions Used in Optimum Interpolation Schemes. Mon. Weather.

Rev. 1975, 103, 605–616. [CrossRef]
18. Thiébaux, H.J. Anisotropic Correlation Functions for Objective Analysis. Mon. Weather. Rev. 1976, 104, 994–1002. [CrossRef]
19. Franke, R.H. Covariance Functions for Statistical Interpolation; Technical Report NPS-53-86-007; Naval Postgraduate School:

Monterey, CA, USA, 1986.
20. Weber, R.O.; Talkner, P. Some Remarks on Spatial Correlation Function Models. Mon. Weather. Rev. 1993, 121, 2611–2617.

[CrossRef]
21. Gaspari, G.; Cohn, S.E. Construction of Correlation Functions in Two and Three Dimensions. Q. J. R. Meteorol. Soc. 1999,

125, 723–757. [CrossRef]
22. Maybeck, P.S. Stochastic Models, Estimation, and Control; Mathematics in Science and Engineering; Academic Press: New York, NY,

USA, 1979; Volume 141-1. [CrossRef]
23. Schubert, T.; Korte, J.; Brockmann, J.M.; Schuh, W.D. A Generic Approach to Covariance Function Estimation Using ARMA-

Models. Mathematics 2020, 8, 591. [CrossRef]
24. Doob, J.L. Stochastic Processes; Wiley Series in Probability and Mathematical Statistics; Wiley: New York, NY, USA, 1953.
25. Li, Z. Methods for Irregularly Sampled Continuous Time Processes. Ph.D. Thesis, University College London, London, UK, 2014.
26. Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 1995.

[CrossRef]
27. Jenkins, G.M.; Watts, D.G. Spectral Analysis and Its Applications; Holden-Day: San Francisco, CA, USA, 1968.
28. Priestley, M.B. Spectral Analysis and Time Series; Academic Press: London, UK; New York, NY, USA, 1981.
29. Gelfand, A.E.; Diggle, P.; Guttorp, P.; Fuentes, M. Handbook of Spatial Statistics; Handbooks of Modern Statistical Methods;

Chapman & Hall/CRC: Boca Raton, FL, USA, 2010. [CrossRef]
30. Zastavnyi, V.P. Positive Definiteness of a Family of Functions. Math. Notes 2017, 101, 250–259. [CrossRef]
31. Goldberg, S. Introduction to Difference Equations; Dover Publications: New York, NY, USA, 1986.
32. Yaglom, A.M. Correlation Theory of Stationary and Related Random Functions: Volume I: Basic Results; Springer Series in Statistics;

Springer: New York, NY, USA, 1987.
33. Schaeffer, P.; Faugére, Y.; Legeais, J.F.; Ollivier, A.; Guinle, T.; Picot, N. The CNES_CLS11 Global Mean Sea Surface Computed

from 16 Years of Satellite Altimeter Data. Mar. Geod. 2012, 35, 3–19. [CrossRef]
34. Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave; Version 5.2.0 Manual: A High-Level Interactive Language for

Numerical Computations; Free Software Foundation: Boston, MA, USA, 2020.

http://dx.doi.org/10.1007/s00190-007-0195-4
http://dx.doi.org/10.1029/JB074i017p04259
http://dx.doi.org/10.1029/JB076i032p07844
http://dx.doi.org/10.1029/JB077i020p03660
http://dx.doi.org/10.1029/RG016i003p00421
http://dx.doi.org/10.1007/BF02585616
http://dx.doi.org/10.1029/97JC02198
http://dx.doi.org/10.1007/978-3-540-74700-0_9
http://dx.doi.org/10.1002/9780470316993
http://dx.doi.org/10.1175/1520-0493(1975)103<0605:OSPOCF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1976)104<0994:ACFFOA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1993)121<2611:SROSCF>2.0.CO;2
http://dx.doi.org/10.1002/qj.49712555417
http://dx.doi.org/10.1016/S0076-5392(08)62169-4
http://dx.doi.org/10.3390/math8040591
http://dx.doi.org/10.1007/978-3-662-03098-1
http://dx.doi.org/10.1201/9781420072884
http://dx.doi.org/10.1134/S0001434617010291
http://dx.doi.org/10.1080/01490419.2012.718231

	Introduction and Related Work
	The Family of Non-Repeated Poles ARMA Models
	Generalization to Repeated Poles ARMA Models
	The Half-Integer Matérn Covariance Function
	Repeated Poles ARMA Models
	Bounds for the Polynomial Coefficients of Markov Models
	Oscillatory Repeated Poles ARMA Models

	Application to Altimetry Data: A Demonstration
	Summary and Conclusions
	References

