
Proceeding Paper

Does AutoML Outperform Naive Forecasting? †

Gian Marco Paldino 1,* , Jacopo De Stefani 1, Fabrizio De Caro 2 and Gianluca Bontempi 1

����������
�������

Citation: Paldino, G.M.; De Stefani,

J.; De Caro, F.; Bontempi, G. Does

AutoML outperform Naive

forecasting?. Eng. Proc. 2021, 5, 36.

https://doi.org/10.3390/

engproc2021005036

Academic Editors: Ignacio Rojas,

Fernando Rojas, Luis Javier Herrera

and Hector Pomare

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Machine Learning Group, Université Libre de Bruxelles, 1050 Bruxelles, Belgium; jdestefa@ulb.ac.be (J.D.S.);
gbonte@ulb.ac.be (G.B.)

2 Dipartimento di Ingegneria, Università degli Studi del Sannio, 82100 Benevento, Italy; fdecaro@unisannio.it
* Correspondence: gpaldino@ulb.ac.be
† Presented at the 7th International conference on Time Series and Forecasting, Gran Canaria, Spain,

19–21 July 2021.

Abstract: The availability of massive amounts of temporal data opens new perspectives of knowledge
extraction and automated decision making for companies and practitioners. However, learning
forecasting models from data requires a knowledgeable data science or machine learning (ML)
background and expertise, which is not always available to end-users. This gap fosters a growing
demand for frameworks automating the ML pipeline and ensuring broader access to the general
public. Automatic machine learning (AutoML) provides solutions to build and validate machine
learning pipelines minimizing the user intervention. Most of those pipelines have been validated
in static supervised learning settings, while an extensive validation in time series prediction is still
missing. This issue is particularly important in the forecasting community, where the relevance
of machine learning approaches is still under debate. This paper assesses four existing AutoML
frameworks (AutoGluon, H2O, TPOT, Auto-sklearn) on a number of forecasting challenges (univari-
ate and multivariate, single-step and multi-step ahead) by benchmarking them against simple and
conventional forecasting strategies (e.g., naive and exponential smoothing). The obtained results
highlight that AutoML approaches are not yet mature enough to address generic forecasting tasks
once compared with faster yet more basic statistical forecasters. In particular, the tested AutoML
configurations, on average, do not significantly outperform a Naive estimator. Those results, yet
preliminary, should not be interpreted as a rejection of AutoML solutions in forecasting but as an
encouragement to a more rigorous validation of their limits and perspectives.

Keywords: AutoML; time series forecasting; benchmarking; frameworks

1. Introduction

The pervasiveness of electronic devices enables the collection of temporal data (about
production, development, sales) at a growing rate. Extracting actionable knowledge from
temporal data requires specific technical skills, yet the growing availability of data is not
accompanied by an equivalent increase in the number of experts able to analyze them, thus
reducing their potential impact.

Automated machine learning (AutoML) [1] aims to fill this gap by automatizing
the different phases of data analysis and providing suitable solutions for data scientists,
practitioners and final users. AutoML approaches can help obtain a glimpse of knowledge
about new data, for example, suggesting the optimal model to use. Data may also be too
noisy or of poor quality, in which case AutoML would quickly reflect it, by showing failure
in multiple pipelines, saving the data scientist a lot of time.

However, finding a procedure that automates the entire ML process for forecasting is
a risky endeavor. Time series data have constraints and peculiarities (e.g., trend and sea-
sonalities, outliers, drifts, abrupt changes) to handle in specific ways, often not compatible
with more traditional tabular data. Furthermore, most AutoML approaches rely on the
assumption that the higher the degree of search in the hyperparameter space, the better the

Eng. Proc. 2021, 5, 36. https://doi.org/10.3390/engproc2021005036 https://www.mdpi.com/journal/engproc

https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-8680-9403
https://orcid.org/0000-0001-5577-7544
https://orcid.org/0000-0001-8621-316X
https://doi.org/10.3390/engproc2021005036
https://doi.org/10.3390/engproc2021005036
https://doi.org/10.3390/engproc2021005036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/engproc2021005036
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021005036?type=check_update&version=3

Eng. Proc. 2021, 5, 36 2 of 10

final result. Now, in large dimensional and noisy settings, pushing the degree of grid search
too far leads inevitably to a high degree of variance of the returned solution, which, if not
adequately assessed with external validation data, could be prone to overfitting [2]. This is
particularly the case of large dimensional settings like the ones that can be encountered in
multivariate forecasting. In those cases, embedding, i.e., the transformation in a tabular
form for supervised learning, produces high-dimensional input datasets. Automatizing
the feature selection phase without accounting for an external validation set can be detri-
mental, returning over-optimistic assessment of the generalization accuracy of the chosen
set of features.

Thus far, the main comparative studies on AutoML solutions are [3–8]. They generally
compare various frameworks against each other on standard supervised learning tasks.
Results show high variance [3], or no significant difference between models [7], although
more recent comparisons appear to favor AutoGluon [8], suggesting the importance
of feature preprocessing. However, frameworks tend not to significantly outperform
traditional models (e.g., random forest within 4 h [4]) nor humans in easy classification
tasks [5].

This paper assesses the capabilities of four AutoML frameworks (AutoGluon, H2O,
TPOT, Auto-sklearn) with respect to conventional statistical forecasting strategies (naive,
exponential smoothing, Holt-Winter’s). This issue is particularly important in the fore-
casting community, where the relevance of machine learning approaches is still under
debate [9]. In order to provide a fair comparison, we took advantages of the possibility
provided by AutoML packages to limit the allowed computational time. The goal is to show
experimentally the effectiveness of known AutoML frameworks on time series forecasting,
challenging the framework by limiting their computational time and comparing the results
with fast conventional forecasting strategies. In particular, the main contribution of this
manuscript are:

• A description of several state-of-the-art AutoML frameworks;
• The comparison between several state-of-the-art AutoML frameworks on univariate

and multivariate time series forecasting on different horizons;
• The assessment of their effectiveness against conventional forecasting strategies such

as naive and exponential smoothing on comparable scale times.

Note that the constraint on the execution time is not simply an experimental decision
but it reflects a criticism of the authors about the continuous increase of computing re-
sources required by ML methods (notably deep learning). Since this resource consumption
is not necessarily followed by a correspondent improvement of the overall performances,
we think it is time for the forecasting community to investigate the trade-off between
time (and energy) consumption vs. accuracy. The paper is organized as follows: Section 2
introduces the problem formulation, while Section 3 describes the adopted AutoML frame-
works. The benchmarking experiments are described in Section 4, with the discussion and
conclusions in Section 5.

2. Machine Learning and Forecasting

A multivariate and multitemporal model f aims at learning the mapping between past
values and future values of an N-variate time series. Given a time resolution ∆t = ti − ti−1
at time instant t, a lag L and a forecasting horizon h, the temporal dependency can be
represented in the embedded form: y1,t+1, . . . , y1,t+h

· · ·
yN,t+1, . . . , yN,t+h

 = f

 y1,t−L+1, . . . , y1,t
· · ·

yN,t−L+1, . . . , yN,t

 (1)

The multi-input multi-output nature of (1) suggests the adoption of a multi-output ap-
proach (e.g., neural networks). However, since most learning algorithms available in

Eng. Proc. 2021, 5, 36 3 of 10

AutoML frameworks are single-output, we will decompose the MIMO problem in a se-
quence of N multiple-input single-output (MISO) tasks:

(
y1,t+1, . . . , y1,t+h

)
= f1.1

 y1,t−L+1, . . . , y1,t
· · ·

yN,t−L+1, . . . , yN,t

· · ·(

yN,t+1, . . . , yN,t+h
)
= f1.N

 y1,t−L+1, . . . , y1,t
· · ·

yN,t−L+1, . . . , yN,t

(2)

If we assume that there is no significant cross-series dependency, we may further decom-
pose (2) into a set of N single-input, single-output (SISO) tasks:

(y1,t+1, . . . , y1,t+h) = f2.1(y1,t−L+1, . . . , y1,t)
· · ·

(yN,t+1, . . . , yN,t+h) = f2.N(yN,t−L+1, . . . , yN,t)
(3)

The above formulations make the natural adoption of supervised learning pipelines [10],
which are typically composed of the following steps:

1. Preprocessing : the observations are cleaned, normalized and rescaled. Missing data
can be removed or replaced. New features may be produced by means of feature
engineering [11].

2. Dimensionality reduction: this step aims at reducing the input dimension, to diminish
the computational burden and avoid numerical and statistical issues [12].

3. Model estimation: this step estimates from the available data the input-output rela-
tionship.

4. Performance assessment: the model performances are validated by means of a valida-
tion set, a subsample of the observed data that is kept aside to verify the ability of the
model previously trained to correctly predict new unseen samples. This is followed
by an analysis of the distribution of performance measures.

It is important to remark that those steps are either skipped or extremely simplified in
conventional forecasting strategies (e.g., exponential smoothing) with an evident gain in
terms of computational time.

2.1. Conventional Statistical Approaches

Those methods provide a quick insight to the behavior of a time series and are efficient
to compute. The simplest approach is the naive: the time series forecast at time t + 1 is
provided by the last available observation at time t. Another simple technique is the mean
model, where the forecast at time t + 1 is the average of all previous observations up to
time t. Exponential smoothing is an approach proposed by [13,14], based on exponentially
decaying weighted averages of past observations. The approach favors recent observations,
and its speed and reliability made it successful. A basic version is the simple exponential
smoothing (4), suitable for data with no clear trend or seasonal pattern. 0 ≤ α ≤ 1 is the
smoothing parameter that controls the rate at which the weights decrease.

ŷt+1|t = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + · · · (4)

Holt and Winters [15] extended the method to capture trends and seasonality. The Holt-
Winters seasonal method comprises the forecast equation and three smoothing equations
(level, trend, seasonality). A corresponding multiplicative version exists [16]. When the
seasonal variations are roughly constant, the additive method is preferred, and when the
seasonal variations are changing proportional to the level of the series, the multiplicative
method is chosen. By considering variations in the combinations of the trends and seasonal
components, nine exponential smoothing methods are possible [17–19].

Eng. Proc. 2021, 5, 36 4 of 10

3. AutoML Frameworks

This section sketches the AutoML frameworks we selected for the experimental
comparison. All of them provide the possibility to limit their execution time, enabling a
fair comparison with faster statistical methods (Section 2.1).

H2O is a distributed machine learning platform. Its AutoML module [20] covers a
large selection of candidate models, including two stacked ensembles of all the trained
models and of the best model of each family, respectively. It provides a simple and highly
customizable interface where the user can specify the maximum time of the AutoML
process or the maximum number of models to build in an AutoML run. The available ML
algorithms are distributed random forest, including both random forest and extremely
randomized trees; generalized linear models, XGBoost gradient boosting machine, H2O gra-
dient boosting machine, and deep neural network. Preprocessing is limited to automated
target encoding of high dimension categorical variables.

Auto-sklearn [21] is a Python library for AutoML built on top of the scikit-learn
library [22]. It uses 15 learners (notably k nearest neighbors, gradient boosting, stochastic
gradient descent, random forest, AdaBoost), 14 feature preprocessing methods, and 4 data
preprocessing methods. It leverages meta-learning by evaluating a set of meta-features
(e.g., statistics about the number of data points, features) over hundreds of datasets and
storing the most accurate related configurations. It also adopts Bayesian optimization to fit
a probabilistic model to capture the relationship between hyperparameter settings and their
measured performance. Additionally, it uses ensemble selection, a greedy procedure that,
starting with an empty ensemble, iteratively adds the model that maximizes the ensemble
effectiveness. Its data preprocessing includes one-hot encoding, imputation of missing
values and normalization. Its feature preprocessing performs feature selection via principal
component analysis, singular value decomposition and other methods.

AutoGluon [8] is a Python library for AutoML dealing with text, image, and tabular
data. The set of learners includes neural networks, LightGBM boosted trees, CatBoost
boosted trees, random forests, extremely randomized trees, and k nearest neighbors. Its
preprocessing is split into model-agnostic preprocessing, including features categorization
and treatment (e.g., encoding of categorical variables), and model-specific preprocessing
applied on a copy of the data passed to each model. Multi-layer stack ensembling and
repeated k-fold bagging are used to combine the base learners.

TPOT [23] is a tree-based pipeline optimization tool that automatically designs and
optimizes ML pipelines using genetic programming (GP) [24]. It wraps the scikit-learn
library [22], and offers the following models: decision tree, random forest, eXtreme gra-
dient boosting, logistic regression and k nearest neighbor. The preprocessing and feature
selection functionalities include standard scaler, randomized PCA, SelectKBest, and recur-
sive feature elimination. Each ML pipeline is treated as a GP primitive, and GP trees are
constructed from them. The process starts by generating 100 random tree-based pipelines
and evaluating them, while for every generation, the top 20 are selected to maximize
accuracy and minimize the number of operators. Each of the top 20 pipelines produces
five copies with cross-overs or random mutations over the individual components of the
pipeline. The whole procedure is repeated for 100 generations.

4. Experimental Benchmark

This section introduces the time series benchmarks, the methodology and the evalua-
tion metrics and the results. We consider two public datasets made available in [25]. The
format of the dataset has been adapted to ease research related to multivariate time series.
A link can be found in the footnotes of Section 5.

• Electricity consumption: the original dataset (https://archive.ics.uci.edu/ml/datas
ets/ElectricityLoadDiagrams20112014, accessed on 30 March 2021) contains electricity
consumption of 370 clients recorded every 15 min from 2011 to 2014. The preprocessed
dataset contains hourly consumption (in kWh) of 321 clients from 2012 to 2014.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Eng. Proc. 2021, 5, 36 5 of 10

• Exchange rate: the dataset (possible source: https://fred.stlouisfed.org/series/EXU
SEU, accessed on 3 March 2021) is a collection of the daily exchange rates of eight
foreign countries, including Australia, Great Britain, Canada, Switzerland, China,
Japan, New Zealand and Singapore. The considered time ranges from 1990 to 2016.

We benchmark four AutoML frameworks against simple and conventional forecasting
strategies by adopting a SISO (3) approach for univariate forecasting and a MISO (2)
approach for multivariate forecasting. The rationale behind the choice of MISO over MIMO
(1) is that not all AutoML frameworks provide the possibility of predicting multiple-output,
and this would not have produced a fair comparison. An additional reason is the intrinsic
univariate nature of conventional methods such as naive or exponential smoothing: a
MISO approach provides a more natural comparison by predicting only one variable. For
the univariate case, we decide to work with the first available variable, without loss of
generality. The choice of additional variables for the multivariate case is made as follows:
starting from the first variable, we pick its N most correlated variables, and we forecast on
the first variable.

Preprocessing: we do not perform any data preprocessing for three reasons. First,
data are already in a format that does not need particular treatment. Second, some AutoML
frameworks, as mentioned in Section 3, include some data preprocessing. If this improves
the performances, the corresponding framework should be rewarded. Third, this work
aims at benchmarking models, rather than maximizing the correctness of forecasting: as
long as all models are provided with the same data, the benchmark is fair.

AutoML: the selected frameworks treat tabular data in a supervised learning setting.
They hence require an embedding for the time series (see Section 1). The lag parameter
for the embedding was fixed at L = 5, and future work will explore other values. Since
one of the two time series considered contained at most eight variables, we decided to set
the possible number of variables to v ∈ [1, 3, 5, 8]. The values for the horizon have been
fixed to h ∈ [1, 2] and the time allowed for each AutoML framework was limited to t =
[60 s, 120 s, 300 s]. These values are low with respect to standard AutoML times for an
optimal exploration of the space of parameters, but the comparison with particularly fast
methods requires those limitations. Longer time frames will be considered in future work.
The combinations of all tested parameters are presented in (5), and one experiment has
been carried out for each of them. No additional parameter has been set to the frameworks.

Auto-sklearn
AutoGluon
H2O
TPOT

×

1 variable
3 variables
5 variables
8 variables

× [Horizon 1
Horizon 2

]
×

 Time 60 s
Time 120 s
Time 300 s

 (5)

Conventional forecasting strategies: we consider the naive predictor as our baseline,
and from the exponential smoothing family, we choose the simple exponential smoothing
and four variations of Holt-Winters. We focus on Holt-Winters because of its historical
effectiveness in forecasting [15]. The mentioned variations are summarized in Table 1.

Table 1. Exponential smoothing-approaches considered in this work, specifying the nature of their trends and seasonal
components.

Method Trend Comp. Seasonal Comp.

Simple exponential smoothing None None

Additive Holt-Winters’ method Additive Additive

Multiplicative Holt-Winters’ method Additive Multiplicative

Additive Holt-Winters’ damped method Additive damped Additive

Multiplicative Holt-Winters’ damped method Additive damped Multiplicative

https://fred.stlouisfed.org/series/EXUSEU
https://fred.stlouisfed.org/series/EXUSEU

Eng. Proc. 2021, 5, 36 6 of 10

Train, validation and metrics: We consider the absolute error, i.e., the absolute differ-
ence between the real value yi and the predicted value ŷi. Our validation strategy divides
the time series into three equal fragments, considering one additional third at each iteration.
The last 16 points of this set are considered as the validation set, while all the previous
points are the train set. This results in a total of 48 test points from 3 different areas of the
time series.

Experimental Results

Figures 1–4 show critical distance plots, i.e., a graphical representation of the results of
the Friedman statistical test (with post hoc Nemenyi test), as suggested in [26]. The methods
are ordered according to their performance from left to right (left is better), while the black
bar connects methods that are not significantly different (at p = 0.05). The nomenclature
chosen follows the pattern framework_variables_time. A selection of models is shown in
Figures 1–3; in particular, we plot the most and least performing variant for each AutoML
framework and all the conventional methods. Figures 1 and 2 present the methods ranking
over the electricity and exchange time series, respectively, averaging over different horizons.
Figure 3 represents the average over both time series. The same results of Figure 3 are
presented in Figure 4, but the 20 most performing models are considered. Table 2 presents
the win/losses of all studied approaches with respect to the naive predictor. In all cases,
the metric considered is the absolute error. This analysis highlights the following results:

• Short-range training times (in the order of few minutes) are not sufficient for the
AutoML frameworks considered to significantly outperform conventional methods
(Figure 3). For short-horizons quick forecasting, it might therefore be convenient to
rely on the latter.

• In terms of training time, 120 s seems to allow slightly better generalization ability
than 60 or 300 s (Table 2). This might indicate that with 60 s, the models tend to
underfit and with 300 s to overfit the observations.

• All traditional methods dominate every AutoML method in terms of wins count
with respect to the naive (Table 2), which reflects the strong forecasting ability of the
exponential smoothing family of methods. It could be appropriate to consider those
methods as a baseline.

• Moving from a univariate SISO to multivariate MISO approach does not improve
the performances of any method despite that the variables are added by maximizing
correlation. This seems to suggest a lack of effectiveness in the feature selection
approaches of the AutoML frameworks, when implemented.

Figure 1. CD plot—selected models comparison of the absolute errors over the validation set for the
electricity time series.

Eng. Proc. 2021, 5, 36 7 of 10

Figure 2. CD plot—selected models comparison of the absolute errors over validation set for the
exchange time series.

Figure 3. CD plot—selected models comparison of the absolute errors over validation set for both
time series.

Figure 4. CD plot—top 20 models comparison of the absolute errors over validation set for both
time series.

Eng. Proc. 2021, 5, 36 8 of 10

Table 2. Win/loss count with respect to the naive approach presented in Section 2.1. The counts are made over the four case
studies considered: electricity and exchange time series for 1-step ahead and 2-steps ahead forecasting. The nomenclature
chosen follows the pattern framework_variables_time, and the metric considered is the absolute error.

Model Wins Losses Model Wins Losses

Holt-Winters (addd-add) 146 46 h2o_v3_300s 66 126
Holt-Winters (add-add) 146 46 autogluon_v3_300s 65 127
SimpleExpSmoothing 139 53 tpot_v3_60s 65 127
Holt-Winters (addd-mul) 138 54 h2o_v5_60s 65 127
Holt-Winters (add-mul) 138 54 h2o_v3_60s 63 129
h2o_v1_120s 80 112 h2o_v8_60s 62 130
h2o_v1_300s 79 113 tpot_v5_60s 62 130
autosklearn_v1_300s 75 117 autosklearn_v1_60s 61 131
h2o_v1_60s 75 117 tpot_v8_60s 60 132
h2o_v8_120s 74 118 autogluon_v5_300s 60 132
autogluon_v1_300s 74 118 tpot_v8_120s 60 132
tpot_v1_120s 74 118 autogluon_v8_300s 59 133
tpot_v8_300s 74 118 autogluon_v8_120s 59 133
autogluon_v1_60s 73 119 autogluon_v5_120s 59 133
tpot_v1_60s 72 120 autogluon_v8_60s 57 135
tpot_v1_300s 71 121 autogluon_v5_60s 53 139
h2o_v5_300s 69 123 autosklearn_v3_300s 51 141
autogluon_v1_120s 69 123 h2o_v5_120s 50 142
autogluon_v3_120s 69 123 autosklearn_v5_300s 36 156
h2o_v8_300s 68 124 autosklearn_v3_120s 18 174
tpot_v5_120s 67 125 autosklearn_v5_120s 17 175
autogluon_v3_60s 67 125 autosklearn_v5_60s 14 178
autosklearn_v1_120s 67 125 autosklearn_v8_300s 14 178
tpot_v5_300s 66 126 autosklearn_v8_60s 9 183
tpot_v3_300s 66 126 autosklearn_v8_120s 5 187
tpot_v3_120s 66 126 autosklearn_v3_60s 2 190
h2o_v3_120s 66 126 Naive Base Base

5. Conclusions, Recommendations and Future Work

Automated machine learning is a promising research direction aiming to support
practitioners in unleashing the potential of ML for data science. Various frameworks
currently exist, and they differ by their feature selection, model selection and parameter
optimization approaches. With sufficient time and resources, they have been showing
excellent results in several learning problems.

This paper supports the idea that it is probably too soon to consider them as a full-
fledged solution for time series forecasting. In particular, we deem that most solutions
hang more on the complexity and comprehensiveness side than on the one of a rigorous
validation of the added value with respect to simpler, yet less prone to overfitting, solu-
tions. This is particularly delicate in forecasting settings where the high noise, the large
dimension and the small number of samples would advise for a more cautious attitude
with respect to complex automatic solutions. Our conclusion is supported by a benchmark
of selected AutoML frameworks against simple statistical methods like naive and Holt-
Winter’s. The obtained results suggest that, in the short term, AutoML frameworks do not
significantly outperform traditional methods, and relying exclusively on them might not
be the optimal solution.

On the basis of the results obtained, we would like to make some recommendations to
the AutoML community. It is important that any automatic selection strategy is supported
by an external validation dataset, including significance tests with respect to simple and
naive strategies. In the case of limited data, permutation strategies may be adopted to
assess the added value of complex ML pipelines, as well. Last but not least, we deem

Eng. Proc. 2021, 5, 36 9 of 10

that AutoML tools should have a pedagogical role with respect to end users by educating
them in terms of the trade-off between accuracy and computational resource (and energy)
consumption. For instance, a graphical representation of the cost–benefit ratio could help
in that sense.

Further work will assess the impact of longer computational time allowed to the
AutoML models (in the order of hours or days) and repeat the tests for larger horizons,
where traditional methods might suffer. AutoML frameworks also offer deep customization
to improve their performance, which has not been considered in this work and will be
studied. Additionally, an analysis of other frameworks that offer time-series-specific
treatments is foreseen.

Acknowledgments: Gianluca Bontempi was supported by Service Public de Wallonie Recherche
under grant n° 2010235–ARIAC by DIGITALWALLONIA4.AI. The authors declare they have no conflicts
of interest. Code is available at the following url: https://github.com/gmpal/AutoML-vs-Naive-b
enchmark (accessed on 30 March 2021). Data are available at the following url: https://github.com/l
aiguokun/multivariate-time-series-data (accessed on 30 March 2021).

References
1. He, X.; Zhao, K.; Chu, X. AutoML: A Survey of the State-of-the-Art. Knowl.-Based Syst. 2021, 212, 106622. [CrossRef]
2. Bontempi, G. A blocking strategy to improve gene selection for classification of gene expression data. IEEE/ACM Trans. Comput.

Biol. Bioinform. 2007, 4, 293–300. [CrossRef] [PubMed]
3. Balaji, A.; Allen, A. Benchmarking automatic machine learning frameworks. arXiv 2018, arXiv:1808.06492.
4. Gijsbers, P.; LeDell, E.; Thomas, J.; Poirier, S.; Bischl, B.; Vanschoren, J. An open source automl benchmark. arXiv 2019,

arXiv:1907.00909.
5. Hanussek, M.; Blohm, M.; Kintz, M. Can AutoML outperform humans? An evaluation on popular OpenML datasets using

AutoML Benchmark. arXiv 2020, arXiv:2009.01564.
6. Guyon, I.; Sun-Hosoya, L.; Boullé, M.; Escalante, H.J.; Escalera, S.; Liu, Z.; Jajetic, D.; Ray, B.; Saeed, M.; Sebag, M.; et al. Analysis

of the AutoML Challenge Series 2015–2018. In Automated Machine Learning; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; The
Springer Series on Challenges in Machine Learning; Springer: Cham, Switzerland, 2019; doi:10.1007/978-3-030-05318-5_10.
[CrossRef]

7. Zöller, M.A.; Huber, M.F. Benchmark and survey of automated machine learning frameworks. arXiv 2019, arXiv:1904.12054.
8. Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. Autogluon-tabular: Robust and accurate automl for

structured data. arXiv 2020, arXiv:2003.06505.
9. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways

forward. PLoS ONE 2018, 13, e0194889. [CrossRef] [PubMed]
10. Bontempi, G.; Taieb, S.B.; Le Borgne, Y.A. Machine learning strategies for time series forecasting. In European Business Intelligence

Summer School; Springer: Berlin, Germany, 2012; pp. 62–77.
11. Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time series feature extraction on basis of scalable hypothesis tests (tsfresh—A

python package). Neurocomputing 2018, 307, 72–77. [CrossRef]
12. Bermingham, M.L.; Pong-Wong, R.; Spiliopoulou, A.; Hayward, C.; Rudan, I.; Campbell, H.; Wright, A.F.; Wilson, J.F.; Agakov, F.;

Navarro, P.; et al. Application of high-dimensional feature selection: Evaluation for genomic prediction in man. Sci. Rep. 2015,
5, 1–12. [CrossRef] [PubMed]

13. Brown, R.G. Statistical Forecasting for Inventory Control; McGraw/Hill: New York, NY, USA, 1959.
14. Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20, 5–10. [CrossRef]
15. Goodwin, P. The holt-winters approach to exponential smoothing: 50 years old and going strong. Foresight 2010, 19, 30–33.
16. Hyndman, R.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. Forecasting with Exponential Smoothing: The State Space Approach; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 2008.
17. Pegels, C.C. Exponential forecasting: Some new variations. Manag. Sci. 1969, 15, 311–315.
18. Gardner, E.S., Jr. Exponential smoothing: The state of the art. J. Forecast. 1985, 4, 1–28. [CrossRef]
19. Taylor, J.W. Exponential smoothing with a damped multiplicative trend. Int. J. Forecast. 2003, 19, 715–725. [CrossRef]
20. LeDell, E.; Poirier, S. H2O AutoML: Scalable Automatic Machine Learning. In Proceedings of the 7th ICML Workshop on

Automated Machine Learning (AutoML), Online, 18 July 2020.
21. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning.

2015. Available online: http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning (accessed on
30 March 2021).

22. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. CoRR 2012, abs/1201.0490. [CrossRef]

 https://github.com/gmpal/AutoML-vs-Naive-benchmark
 https://github.com/gmpal/AutoML-vs-Naive-benchmark
https://github.com/laiguokun/multivariate-time-series-data
https://github.com/laiguokun/multivariate-time-series-data
http://doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1109/TCBB.2007.1014
http://www.ncbi.nlm.nih.gov/pubmed/17473321
http://dx.doi.org/10.1007/978-3-030-05318-5_10
http://dx.doi.org/10.1371/journal.pone.0194889
http://www.ncbi.nlm.nih.gov/pubmed/29584784
http://dx.doi.org/10.1016/j.neucom.2018.03.067
http://dx.doi.org/10.1038/srep10312
http://www.ncbi.nlm.nih.gov/pubmed/25988841
http://dx.doi.org/10.1016/j.ijforecast.2003.09.015
http://dx.doi.org/10.1002/for.3980040103
http://dx.doi.org/10.1016/S0169-2070(03)00003-7
http://papers. nips. cc/paper/5872-efficient-and-robust-automated-machine-learning
http://dx.doi.org/abs/1201.0490

Eng. Proc. 2021, 5, 36 10 of 10

23. Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a Tree-based Pipeline Optimization Tool for Automating
Data Science. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’16), Denver, CO, USA, 20–24
July 2016; ACM: New York, NY, USA, 2016; pp. 485–492. [CrossRef]

24. Banzhaf, W.; Nordin, P.; Keller, R.E.; Francone, F.D. Genetic Programming: An Introduction; Morgan Kaufmann Publishers:
San Francisco, CA, USA, 1998; Volume 1.

25. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In
Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor,
MI, USA, 8–12 July 2018; pp. 95–104.

26. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.

http://dx.doi.org/10.1145/2908812.2908918

	Introduction
	Machine Learning and Forecasting
	Conventional Statistical Approaches

	AutoML Frameworks
	Experimental Benchmark
	Conclusions, Recommendations and Future Work
	References

