
Proceeding Paper

Time Series Chlorophyll-A Concentration Data Analysis: A
Novel Forecasting Model for Aquaculture Industry †

Elias Eze 1,* , Sam Kirby 2, John Attridge 2 and Tahmina Ajmal 1

����������
�������

Citation: Eze, E.; Kirby, S.; Attridge,

J.; Ajmal, T. Time Series

Chlorophyll-A Concentration Data

Analysis: A Novel Forecasting Model

for Aquaculture Industry . Eng. Proc.

2021, 2, 5027. https://doi.org/

10.3390/engproc2021005027

Academic Editors: Ignacio Rojas,

Fernando Rojas, Luis Javier Herrera

and Hector Pomare

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for Research in Applicable Computing (IRAC), School of Computer Science and Technology,
University of Bedfordshire, Luton LU1 3JU, UK; tahmina.ajmal@beds.ac.uk

2 Chelsea Technology Group, 55 Central Avenue, West Molesey, Surrey KT8 2QZ, UK;
skirby@chelsea.co.uk (S.K.); jattridge@chelsea.co.uk (J.A.)

* Correspondence: elias.eze1@beds.ac.uk
† Presented at the 7th International conference on Time Series and Forecasting, Gran Canaria, Spain,

19–21 July 2021.

Abstract: Eutrophication in fresh water has become a critical challenge worldwide and chlorophyll-
a content is a key water quality parameter that indicates the extent of eutrophication and algae
concentration in a body of water. In this paper, a forecasting model for the high accuracy prediction
of chlorophyll-a content is proposed to enable aquafarm managers to take remediation actions against
the occurrence of toxic algal blooms in the aquaculture industry. The proposed model combines
the ensemble empirical mode decomposition (EEMD) technique and a deep learning (DL) long
short-term memory (LSTM) neural network (NN). With this hybrid approach, the time-series data
are firstly decomposed with the aid of the EEMD algorithm into manifold intrinsic mode functions
(IMFs). Secondly, a multi-attribute selection process is employed to select the group of IMFs with
strong correlations with the measured real chlorophyll-a dataset and integrate them as inputs for the
DL LSTM NN. The model is built on water quality sensor data collected from the Loch Duart salmon
aquafarm in Scotland. The performance of the proposed novel hybrid predictive model is validated
by comparing the results against the dataset. To measure the overall accuracy of the proposed novel
hybrid predictive model, the Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) were used.

Keywords: water quality; aquaculture; forecasting; chlorophyll-a time-series data; deep learn-
ing LSTM

1. Introduction

Eutrophication in freshwater bodies is an organic process usually caused by the
increased enrichment of nutrients which can pollute water quality and adversely affect
aquatic ecosystems. The extent of eutrophication in fresh water can be estimated through
chlorophyll-a concentration monitoring. In the aquaculture industry, this natural process
of nutrient enrichment also results in structural changes to the aquatic ecosystem through
increased algae production, the depletion of fish species, and the prevalent degradation
of overall water quality [1,2]. Chlorophyll-a concentration is representative of the state
of freshwater quality and has generally been used as a key indicator for measuring algal
blooms [3].

According to Gao and Zhang [4], eutrophication has become a ubiquitous fresh-water-
quality pollutant in China. Similarly, a study conducted by Jules et al. [5] estimated the
annual damage costs of the eutrophication of fresh water in England and Wales to be
$105–160 million (£75.0–114.3 m). Given the link between the adverse effect of eutroph-
ication in freshwater and the stagnation of wild fishery populations, the aquaculture
industry has emerged as a crucial means of providing protein to our constantly growing
population. Therefore, the monitoring of water quality parameters (for instance, algal
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biomass and cyanobacteria) through chlorophyll-a concentration is increasingly favoured
over laboratory analysis and similar traditional methods because of the high cost and
labour-intensive requirements associated with them [6]. The effective monitoring and pre-
diction of chlorophyll-a concentrations is a promising approach for the routine estimation
of phytoplankton biomass in the aquaculture ecosystems of the Nile tilapia (Oreochromis
niloticus) [7]. Sensory monitoring of the chlorophyll-a concentration is an effective approach
for reliably assessing the trophic state of freshwater bodies given its strong affinity to the
abundance of phytoplankton, cyanobacteria, and biomass, which affect the turbidity and
general colouration of fresh water [8].

Several studies have been conducted to establish a means of coping with water quality
impairments caused by algal biomass using conventional numerical modelling methods,
least squares support vector regression (LSSVR), neural networks methods such as Radial
Basis Function neural network (RBFNN), Back Propagation neural network (BPNN) al-
gorithms, and machine learning methods to predict chlorophyll-a concentrations as an
indicator for future water quality changes [9–12]. However, the challenge with traditional
numerical methods, LSSVR, and neural networks such as RBFNN and BPNN is the inherent
weakness of the long-term dependency problem. Research has shown that deep learning
long short-term memory (LSTM) neural networks can overcome the above-mentioned
weakness and can provide efficient applicability and reliability for water quality parameter
prediction [13,14]. Additionally, combining the ensemble empirical mode decomposi-
tion (EEMD) method with deep learning LSTM neural network has demonstrated clear
advantages over traditional LSTM neural networks in terms of improved water quality
parameter prediction accuracy in the aquaculture environment [13]. In this paper, a novel
deep learning-based hybrid chlorophyll-a prediction model for the aquaculture industry
is proposed.

2. Data Source
2.1. The Study Area Description and Datasets Analysis

Loch Duart is an independent Scottish salmon aquafarm industry, which has its
headquarters in Scourie, Sutherland, in north-west Scotland. The salmon farming company
owns and operates eight sea-sites and two hatcheries in Sutherland and the Outer Hebrides.
In Loch Duart, salmon are hatched and grown in the cold, clear fresh water of north-west
Scotland. The salmon farming company annually harvests approximately 5000 tons of fresh
salmon. Chlorophyll-a (µg/L) time-series data were collected via a TriLux multi-parameter
sensor probe. The sensor deployment took place at one of their sheltered sites along the
coast (see Figure 1a). The telemetry unit was secured to the metal walkway around the
outside of the net pens and the sensor was situated on the outside of one of the outermost
pens, nearest to the feed barge.

A TriLux multi-parameter fluorometer/sensor (see Figure 1b) developed by Chelsea
Technology Group was used for measuring and collecting a total of 22,708 sets of a
non-linear, non-stationary water-quality parameter time-series dataset at Loch Duart
salmon aquafarm between May and October 2020. The water quality parameters include
chlorophyll-a (470), turbidity, and chlorophyll-a (530).

Generally, the 470 channel measures chlorophyll fluorescence from direct excitation of
chlorophyll-a that usually strongly correlates with phytoplankton biomass in freshwater.
Table 1 shows the list of other sensors developed by Chelsea Technology Group and the
corresponding parameters that each of them measures.
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Figure 1. (a) Installation site of the TriLux multiparameter fluorometer at the salmon aquafarm, with the inset image de-
picting the larger part of the salmon cage; (b) Chelsea Technologies’ TriLux multiparameter fluorometer which monitors 
three key algal parameters in a single probe [15]. 
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Figure 1. (a) Installation site of the TriLux multiparameter fluorometer at the salmon aquafarm, with the inset image
depicting the larger part of the salmon cage; (b) Chelsea Technologies’ TriLux multiparameter fluorometer which monitors
three key algal parameters in a single probe [15].
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2.2. Data Pre-Treatment, Filling and Correction

Water-quality parameter time-series dataset defects usually result in excessive devi-
ation between the measured original water-quality parameter values and the prediction
results. The basis of accurate time-series analysis and the development of effective and reli-
able predictive models is high-quality sample data. To provide a concise, accurate dataset
for the prediction model and improve prediction accuracy, the measured water-quality
parameter data was carefully pre-processed. Generally, the issue of missing data is often
inevitable with automatic water quality monitoring systems. The water-quality parameters
like turbidity, chlorophyll-a (470), and chlorophyll-a (530) were automatically measured
for 10 months at 10 min intervals. To fill in any missing data, a filling-in approach called
linear interpolation algorithm [16] is applied to achieve a better estimation effect that can
accurately approximate the missing data values. In data analysis, a linear interpolation
algorithm assumes the ratio of two separate known data and a single unknown datum to be
a linear interrelation. Therefore, to obtain the missing, unknown water quality parameter
value, the linear interpolation technique applies the slope of the presumed line to compute
the time-series dataset increment.

Definition 1. Time series nature of the measured parameter (Chlorophyll-a (470)).

The automated water quality sensory system at Loch Duart salmon aquafarm mea-
sures the time series water quality parameters at a constant time interval everyday which
can be denoted as β, so that n length time-series of the measured parameters’ datasets is
defined as (1)

Si,n = {(Xi, 1, T1), (Xi, 2, T2), · · · , (Xi, n, Tn)} (1)

where Xi, l represents the values of the measured ith time-series water-quality parameters
by the automatic sensory system at time Tl (1 ≤ i ≤ β, 1 ≤ l ≤ n), so that for a given Tl ,
the sampling time interval is constant at ∆T = (Tl+1 − Tl) = 5 min. Therefore, if the
original value Xi, l is missing, its estimated value X̂i, l can be obtained with the problem
of minimum, which is given as

∣∣X̂i, l − Xi, l
∣∣, changed into the missing value estimation
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problem. Based on the measured data Xi, x and Xi, y at time Ti, x and Ti, y, respectively,
the linear imputation function L(t) could be formulated for the time-series water-quality
parameter monitoring systems as:

L(t) = Xi, x +

(
Xi, x − Xi, y

Ti, x − Ti, y

)
·(t− Ti, x). (2)

For any missing time-series water-quality parameter data at any given moment,
the linear interpolation algorithm firstly finds the two closest moments Ti, x and Ti, y(

Ti, x < t < Ti, y
)
, and estimates the lost data value at time t with the help of the known mea-

sured data Xi, x and Xi, y of Ti, x and Ti, y moments based on Equation (2), i.e., X̂n = L(t).

3. Proposed Model

The EEMD technique and deep learning LSTM NN were merged to form the chlorophyll-
a hybrid prediction model. A detailed implementation processes of the applied EEMD
technique is shown in full in [13]. The LSTM deep learning NN approach is described in
full detail in Section 3.1. The original chlorophyll-a (470) dataset is decomposed effectively
by the application of the EEMD technique into n disparate IMFs and a residual item. The
IMF components that are contained within individual frequency bands are independently
different and usually change with the variation of the chlorophyll-a (470) time-series data
x(t). Likewise, the trend of x(t) is generally demonstrated by the corresponding ensemble
residual item as the output of the decomposition process implementation.

3.1. Deep Learning LSTM Neural Networks

Deep learning LSTM NNs are a special type of recurrent NN (RNN) with significant
improvement in the ability to learn long-term dependencies which gives it an advantage
over other artificial neural networks such as BPNN and RBFNN. Figure 2a illustrates
a typical schematic diagram of a traditional RNN node with the previous hidden state
represented by ht−1, activation tanh function, current input sample by Xt, current output
by ht, and the current hidden state by ht. As depicted in Figure 2, all RNNs generally
have the form of a chain of repeating modules of NNs. These repeating modules generally
have a very basic structure in standard RNNs, like a single tanh layer only. However, a
deep learning LSTM which stores information with the aid of purpose-built memory cells
maintains similar chain-like structure, but with a differently structured repeating module
(see Figure 2b).
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The equations below illustrate the calculation processes involved in deep learning
LSTM NNs.

(a) Forget gate equation:

Ft = σ
(

W f × [ht−1, Xt] + b f

)
(3)

where Ft represents a vector that has a range from 0 to 1 as its values; W f , σ, and b f
represent the weight matrices, sigmoid function, and the bias of forget gate, respectively.
The σ is used to find out whether the new information is unnecessary, in which case the
information ignored and discarded, or necessary and used for updating. Finally, the tanh
function is used to add weight to individual values that pass and determines their level
of relevance, and ranges from −1 to 1. Inside the input gate and the output gate, same
operations are repeated, which are shown in (4)–(7).

(b) Input gate equations:

It = σ(Wi × [ht−1, Xt] + bi) (4)

Ît = tan h(Wi × [ht−1, Xt] + bi) (5)

(c) Output gate equations:

Ot = σ(Wo × [ht−1, Xt] + bo) (6)

ht = Ot × tan h(Ct) (7)

(d) Cell state equation:

Ct =
{
(Ft × Ct−1) +

(
It × Ît

)}
(8)

where Wi and Wo denote the weight matrixes, bi and bo denote the bias vectors of the
network of both input gate and output gate, and the hyperbolic tangent function is denoted
by the tanh function.

3.2. Proposed Water Quality Prediction Model

The proposed hybrid EEMD-LSTM deep learning NN-based water-quality param-
eter prediction model is depicted in Figure 3. With the proposed novel water quality
forecasting model, the measured real water-quality parameter content dataset undergoes
decomposition processes into disparate components by applying the EEMD method for the
purpose of improving the prediction accuracy of the proposed predictive model. The full
procedures demonstrated in Figure 3 show the three important steps which were followed
in developing the novel hybrid water quality parameters prediction solution. Firstly, the
water quality parameters dataset x(t) generates multiple, distinct IMF components and
a corresponding residue RN(t) from the decomposition processes via the applied EEMD
method in the input layer of Figure 3. The decomposition of x(t) is carried out by means of
an iterative sifting procedure as given below:

x(t) =
N

∑
i=1

IMFi(t) + RN(t) (9)

Subsequently, the separate IMF components and their corresponding residue undergo
a process of normalization in the second step and are then used for prediction by the DL
LSTM in the hidden layer of Figure 3. Lastly, in step three, individual prediction results
undergo a reverse normalization process before they are efficiently combined together with
the aid of a summation operation by the summation function to get the final predicted
values as shown in the output layer of Figure 3. As clearly illustrated using the extended
forecasting model with multiple hidden DL LSTM layers (LSTM1,1, LSTM1,2, . . . , LSTMm,1,
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up to LSTMm,n) in Figure 3, individual hidden layers of the stacked DL LSTM are equipped
with multiple memory cells which earn the proposed prediction model the name ‘deep
learning’ NN [17].
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Figure 3. Proposed hybrid EEMD–LSTM deep learning water quality prediction Model.

4. Performance Evaluation

For the evaluation of the proposed hybrid EEMD–LSTM deep learning water-quality
prediction model, four performance evaluation metrics were introduced to evaluate its pre-
diction accuracy. These metrics include MAE, MSE, RMSE, and MAPE. The mathematical
formulae are expressed as follows:

MAE =
1
n

n

∑
i=1
|Mi − Fi| (10)

MSE =
1
n

n

∑
i=1

(Mi − Fi)
2 (11)

RMSE =

√
1
n

n

∑
i=1

(Mi − Fi)
2 (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Mi − Fi
Mi

∣∣∣∣. (13)

In (10)–(13) above, n denotes the number of data points in the dataset, and Vi and Fi
represent the measured real chlorophyll-a values and the forecasted values, respectively.
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The closer these four performance evaluation metrics tend towards 0, the higher the overall
forecasting and fitting accuracy of the proposed solution.

5. Results and Discussions

In this study, decomposing the Chelsea’s TriLux multiparameter fluorometer measured
chlorophyll-a content dataset is an intrinsic aspect of the novel prediction model for
ensuring high short-term prediction accuracy. The EEMD method decomposes the real
chlorophyll-a content dataset into seven individually stable IMF components (IMF 1–7)
and one residual item as depicted in Figure 4a,b. The obtained IMFs from the original
chlorophyll-a (470) dataset decomposition with the EEMD method is shown in Figure 4a,b.
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The graphs in Figure 5a,b clearly show that the novel hybrid forecasting model
provided good results for short-term (6 h) and long-term (24 h) forecast scenarios. With
chlorophyll-a (470) concentration data, the matching trends in both Figure 5a,b further
show that the model can successfully predict, with a high level of accuracy, the presence of
algal bacteria such as cyanobacteria, which is a harmful alga that produces odorous and
toxic substances leading to severe problems for different species of fish in the aquaculture
industry.

The proposed model improved the prediction accuracy due to the application of the
EEMD method, which enabled the predictive model to manifest the temporal features of
the chlorophyll-a (470) content time-series data. This was done through the multi-feature
selection process of the EEMD method which allowed for the selection of certain groups
of IMFs that strongly correlate with the Chelsea’s TriLux multi-parameter fluorometer
measured chlorophyll-a data and integrate them into inputs for the deep learning LSTM
neural network. Table 2 and Figure 6 present the error statistics for both 6 h and 24 h
forecast results. Although these are minimal errors, the overall prediction accuracy could
be further improved with an increase in data availability because the deep learning LSTM
chain structure tends to be more complex and performs better with big data.
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Table 2. Error statistics for 6 h and 24 h chlorophyll-a (470) content prediction.

Error Statistics 6 Hour Prediction 24 Hour Prediction

MSE 0.0013 0.0019
MAE 0.0277 0.0337
RMSE 0.0356 0.0417
MAPE 0.0070 0.0076
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6. Conclusions

Timely prediction of toxic algal blooms with the help of real chlorophyll-a (470)
sensor time-series data in aquatic ecosystems can allow for the effective operation and
management of the aquaculture industry by providing useful information that can facilitate
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the decision-making process in aquafarming. In this study, we present a novel hybrid
model to forecast chlorophyll-a content through the combination of the potential of the
EEMD technique and a DL LSTM neural network approach. The actual experimental data
from Loch Duart Salmon aquafarm show that the proposed model provides impressive
results with high prediction accuracy. For future work, varieties of water quality parameter
time-series datasets measured from different aquafarming sites will be considered to
broaden the application horizon of the proposed forecasting model.
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