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Abstract: GNSS systems allow precise resolution of the geodetic positioning problem through
advanced techniques of GNSS observation processing (PPP or relative positioning). Current instru-
mentation and communications capabilities allow obtaining geocentric and topocentric geodetic high
frequencies time series, whose analysis provides knowledge of the tectonic or volcanic geodynamic
activity of a region. In this work, the GNSS time series study was carried out through the use and
adaptation of R packets to determine their behavior, obtaining displacement velocities, noise levels,
precursors in the time series, anomalous episodes, and their temporal forecast. Statistical and analyt-
ical methods were studied, for example, ARMA, ARIMA models, least-squares methods, wavelet
functions, and Kalman techniques. To carry out a comparative analysis of these techniques and
methods, significant GNSS time series obtained in geodynamically active regions (tectonic and/or
volcanic) were considered.

Keywords: GNSS time series analysis; statistical methods; R software

1. Introduction

GNSS systems (GPS—USA, Glonass—Russia, Galileo—European Union, and Beidou—
China), initially designed for land, sea, and air navigation, possess the ability to use specific
and advanced techniques and methods to provide precisions sufficient to evaluate the
movement of tectonic plates, the volcanic activity, or possible hillside landslides from the
velocities obtained in positioning successive subcentimeter precision.

Geodynamic GNSS geodetic networks are based on permanent stations that operate
continuously, even for high sample rates. The positions obtained make up time series, ini-
tially in geocentric Cartesian coordinates (X, Y, Z). To facilitate the notion of displacement
on the surface of the Earth, these coordinates are transformed into a topocentric system
(e, n, u). The analysis of these series provides the displacement velocity vector as well as
the anomalies that may have occurred in the time period defined by the series. For this,
and according to the objective of the study, different analytical or statistical methods of
time series analysis were used.

In this work, a review of geodetic time series analysis methods and techniques is
presented, and the GNSS positioning of some stations of the SPINA network (South of
the Antarctic Peninsula and North of Africa) that present very significant particularities,
are evaluated, e.g., SEVI (Seville) and CAAL (Calar Alto, Almería). The R language was
used to design and develop new applications and/or adapt existing packages to the case of
topocentric time series. Finally, a comparative analysis of the techniques and methods used
was carried out, and the optimal procedure was proposed for the cases studied, taking into
account the results obtained.
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2. Time Series GNSS Geodetics

GNSS data were analyzed by using scientific software Bernese v5.0 [1]. Along with the
parameter estimation process, carrier phase double difference data were used in ionospheric
delay–free mode. Tropospheric errors were handled by using a combination of the a priori
Saastamoinen model [2] and Neill mapping functions [3]. Tropospheric parameters were
estimated hourly, and ambiguities were fixed for the baseline by using the ionosphere-free
observable with an a priori ionospheric model for determining the wide lane ambiguity [4].
Ocean tide loading displacement corrections from the Onsala Observatory were also
introduced. Normal equations were computed for each daily solution.

It was considered as a VILL reference station (Villafranca) because it belongs to
the IGS network and, therefore, has geocentric coordinates and high precision ITRF2008
velocities [5]. The result of this treatment was a geocentric Cartesian time series (X, Y, Z)
of subcentimeter accuracy. For their geodynamic interpretation, they were transformed
into topocentric coordinates (east, north, elevation). In Rosado et al. 2019 [6], the algorithm
used for this coordinate transformation is described in detail.

3. Statistical and Analytical Methods and Techniques

Topocentric GNSS time series are affected by various sources of error from the spatial
constellation, the GNSS signal propagation medium, and the tracking station. Therefore,
the precision of the ephemeris, of the corrections of the satellite oscillators, of the parameters
of the Earth’s rotation; the influence of the ionosphere and the troposphere; station stability,
multipath effect, electromagnetic signal interference, etc., decisively influence the quality of
the calculated time series. The existence of anomalous observations, the loss of observations
due to obstacles, the noise introduced by other signals, etc., make a prior descriptive
analysis of the series obtained necessary. Through this analysis of the raw series, outliers,
gross errors, and, especially, the noise level of the series were detected. These parameters
recommended an a priori methodological procedure to be followed.

To eliminate or reduce the noise level of the series, various time series filtering tech-
niques were considered, methodologically grouped into initial filters (1–σ, 2–σ, Outlier
R), analytical filters (Kalman, wavelets), and statistical filters (ARMA/ARIMA). Once
this process was carried out, adjustment techniques were applied in order to extract the
information on the geodynamic behavior of the GNSS series considered. In this process,
it was essential to clearly define the objective pursued and the series to be analyzed. A
distinction was made between the horizontal components (east, north) and, on the other
hand, the vertical component (elevation) between linear and non-linear behaviors, between
series that present anomalies due to events of a tectonic or volcanic nature, etc. All this
made it impossible to establish a single procedure for each and every one of the GNSS
geodetic series. Rather an adaptation of techniques and methods was carried out according
to the geodynamic process under study. Figure 1 shows the adjustment techniques used
in this work: linear adjustment, Create and Analyze Time Series (CATS), Seasonal-Trend
Loess Decomposition (STL), Kalman Adjustment, and ARMA/ARIMA. These procedures
developed were all carried out in R software.

These procedures are succinct and conceptually described below, resulting, however,
in a greater depth in those that, due to their specificity, are practically exclusive for the
GNSS series.
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Figure 1. Scheme of statistical and analytical techniques and methods for the treatment of GNSS
time series.

3.1. Initial Filters of the Series

The objective of any initial filtering, which was applied to the GNSS series, consists
of the elimination of data with very different values, outliers, from the rest of the series.
The 1σ and 2σ filters are based on the distance of the series points from a simple linear
regression line. Depending on the chosen filtering, a greater (1σ) or less (2σ) number of
data is eliminated from the series. In the case of non-linear series, this process is carried
out by linear sections within the series. On the other hand, R contains a package, forecast,
to filter time series data that are based on the Box–Cox transform [7,8], which is done by
the tsoutliers() function. It was used to achieve greater linearity, homoscedasticity, and a
tendency to a normal distribution of the values of the series.

3.2. Predictive Filtering: Kalman, ARIMA, ARMA
3.2.1. Kalman

For this filtering, it is necessary to know what the dynamic linear models are like.
Assuming they are known, we proceed to define the Kalman filtering. The Kalman filter is
of a predictive–corrective type; as the parameter θt that determines the state of the model
at time t is calculated, and the estimation of the observations of the series is calculated [9].
Assuming θ0 ∼ N(m0, C0):

θt = Gtθt−1 + ci + RiWt

To calculate the estimate of the data of the series, the following is used:

yt = Ftθt + dt + vt
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3.2.2. ARIMA Model

ARIMA (integrated moving average autoregressive) models are given by the
ARIMA(p, d, q), deal with stationary time series, and are made up of three models: the
autoregressive (AR), the integrated (I), and the mean mobile (MA) model, which are de-
fined, respectively, by p, d, and q. By uniting these three models, we get the ARIMA model,
which is given by:

φp(B)(1− B)dYt = φ0 + θq(B)et

where et represents the errors produced at time t and Yt of the data of the series.
Additionally:

φp(B) = 1− φ1B− φ2B2 − . . .− φpBp

θq(B) = 1− θ1B− θ2B2 − . . .− θqBq

where B is the delay operator.

3.2.3. ARMA Model

ARMA models, defined by ARMA(p, q), deal with non-stationary series and are given
by the union of autoregressive models (AR (p)) and moving average models (MA (q)).
Therefore, by joining the expressions of both models, we obtained the expression of the
ARMA model:

φp(B)Yt = φ0 + θq(B)et

where φp(B) and θq(B) are defined in the same way as in the ARIMA model.

3.3. Wavelet Analysis

The wavelet transform decomposes a signal using functions (wavelets) well localized
in both the physical space (time) and spectral space (frequency), generated from each other
by translation and dilation [10]. The wavelet continuous transform tries to express a signal
x(t), continuous in time, by an expansion of proportional coefficients to the inner product
between the signal and different scaled and translated versions of a function prototype ψ.
This function, known as the mother wavelet or wavelet function, provides a decomposition
of the data in the time-frequency plane, along with successive scales. This time-frequency
transformation depends on two parameters, the scale parameter a, which is related to the
frequency, and the time parameter b, related to the translation of function ψ in the time
domain. The continuous wavelet transform is obtained by:

CWT(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ(

t− b
a

)

where ψ is the mother wavelet.

3.4. CATS Analysis

CATS adjustment (Create and Analyze Time Series) is based on stochastic analysis of
the GNSS series using Maximum Likelihood Estimation (MLE). This estimate is optimal
for the study of noise in a time series. This method makes it possible to simultaneously
estimate the noise amplitudes, the linear trend, the periodic signal, and the amplitudes of
the existing discontinuities, as well as the uncertainty of these parameters [11]. This setting
makes it possible to differentiate between the linear and non-linear parts of the series. The
linear part includes the calculation of outliers, the trend, sudden jumps (e.g., earthquakes),
and sinusoidal terms. In non-linearity, different types of specific noise models are solved,
e.g., white noise and power noise. For the analysis of the GNSS coordinate series, the
following functional model is considered:

x(t) = a + bt +
2

∑
j=1

(A sin(ωjt) + B cos(ωjt)) +
n

∑
j=1

CjH(t− Tj)
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where x is the value of the GNSS coordinate at time t; a is the initial value; b is the velocity;
ω1 and ω2 are the angular frequencies of the annual and semi-annual harmonic components;
and Aj and Bj are the amplitudes of the sine and cosine, respectively. The coefficients Cj
are the magnitudes of the discontinuities described by the following Heasivide function:

H(τ) =

{
0 si τ < 0
1 si τ ≥ 0

and the time instant of the discontinuity Tj. The number of discontinuities in each series is
given by n. Therefore, the parameters to be estimated are the initial value a, the velocity b,
the sine and cosine amplitudes of the annual and semi-annual harmonic components Aj
and Bj, and the coefficients Cj of the magnitudes of the discontinuities considered.

To estimate the noise components using the MLE, the probability function is maxi-
mized by fitting the covariance matrix of the data. The resulting expression is given by:

lik(v̂, C) =
1

(2π)
N
2 (detC)

1
2

e−0.5v̂TC−1 v̂

Taking the natural logarithm, we obtain:

MLE = ln[lik(v̂, C)] = −1
2
[ln(detC) + v̂TC−1v̂ + Nln(2π)]

where N is the number of epochs or observations, C is the covariance matrix of the data,
and v̂ are the post-fit residuals of a model applied to the original series using least squares
with the same covariance matrix C.

Therefore, we are going to assume that the matrix C is a combination of two sources
of error, a white noise component and a power series noise component, so that:

C = a2
ω I + b2

k Jk

where aω and bω are the amplitudes of white noise and color noise, respectively. The
identity matrix, I, is the covariance matrix of the white noise evoking independence in the
time of this type of process. The matrix Jk is the noise covariance matrix of a power series
with a spectral index k and is calculated by means of fractional models integrated in such a
way that:

Jk = TTT

where T is a transformation matrix obtained from:

T = 4T−k/4 =


ψ0 0 0 · · · 0
ψ1 ψ0 0 · · · 0
ψ2 ψ1 ψ0 · · · 0
...

...
...

. . .
...

ψn−1 ψn−2 ψn−3 · · · ψ0


where4T is the sample interval and,

ψn =

k
2
(1− k

2 ) . . . (n− 1− k
2
)

n!
=

Γ(n− k
2
)

n!Γ(− k
2
)

When n tends to inf, ψn can be approximated by

ψn =
n
−

k
2
−1

Γ(− k
2 )
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Therefore, using MLE, we could fit the coordinate time series to a standard model
accurate acoustic by estimating the noise amplitudes for a model, assuming that it is a
combination of white noise and power series noise (WN + PLN, is say, White Noise +
Power-Law Noise). This approach is based on the recent general formula of the covariance
matrix for a power series process, allowing us to estimate noise amplitudes and spectral
index together with the rest of the parameters of the station’s motion model.

The stochastic properties and the linear parameters were adjusted together in one
way, iterative through a function, to maximize them. The function to be maximized chose a
model noise level and estimated the linear parameters, on which a new set of waste was
calculated. Using these residuals and the covariance matrix, the value of likelihood and a
new noise model with a higher likelihood value were chosen. This process was repeated
until the likelihood function reached its maximum value.

3.5. STL Decomposition

STL decomposition (Seasonal and Trend decomposition procedure based on Loess)
additively decomposes a time series into its three components trend, seasonality, and
irregularities [12]. The time series can contain gaps due to various factors. These do not
have a negative influence on the decomposition of the time series. Local regression (Loess)
was used to estimate the three components of the series. STL decomposition consisted of
two processes: internal and external. In the internal process, in each position, the values
of the trend and seasonality components were estimated and updated with the Loess
regression. In the external process, the irregularities component of the series was obtained.
The trend and seasonality components were smoothed. However, both components were
affected by the variation of the series, which could be solved by applying a filter to the
seasonality component. This filter was composed of three models of moving averages and
the Loess regression [12].

4. Application of Methodology Developed and/or Adapted R
4.1. Description of Selected Series from the Spina Network

Selected time series came from permanent geodetic stations located in the south of the
Iberian Peninsula and North Africa, which constitute the SPINA network. This geodetic
network is composed of 7 networks of permanent GPS stations: RAP, MERISTEMUM, IGS,
IGN, REGAM, RENEP, and ERVA. Each of these networks is made up of GPS stations
located in Andalusia, Murcia, the Valencian Community, the south of Portugal, and the
north of Africa [10]. We used the position time series derived from daily observations and
processed the positioning with respect to the IGS station located in Villafranca (VILL) to
get site displacements. Figure 2 shows the horizontal displacement rates at GPS sites in
the south of the Iberian Peninsula and North Africa, estimated from GPS time series data
(January 2005 to January 2014) [13]. All GPS solutions were realized in the ITRF2005 global
reference frame.
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Figure 2. Horizontal displacement rates at GPS sites in the south of the Iberian Peninsula and North
Africa, estimated from GPS time series data with 95% confidence level error ellipses. Different colors
are used for different networks. The red rectangles indicate the selected stations. Adapted from [13].

4.2. Results

The filters explained in this work were applied to the time series of the SEVI and
CAAL stations. Figures 3–6 show the results of the SEVI station and, Figures 7–10 show
the results of the CAAL station.

Figure 3. Topocentric time series east, north, and the elevation of the SEVI station with Outlier R filter. Red dots indicate
RAW series and blue line indicates Outlier R filter.

Figure 4. Topocentric time series east, north, and the elevation of the SEVI station with the wavelet filter result (first line)
and the Kalman filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.
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Figure 5. Topocentric time series east, north, and the elevation of the SEVI station with the ARMA filter result (first line)
and the ARIMA filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.

Figure 6. Topocentric time series east, north, and the elevation of the SEVI station with the CATS result (first line), the STL
decomposition result (second line), and the STL decomposition to CATS result (third line). In the CATS series, black dots
indicate the Outlier R series and red line indicates the CATS result.

Figure 7. Topocentric time series east, north, and the elevation of the CAAL station with Outlier R filter. Red dots indicate
RAW series and blue line indicates Outlier R filter.
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Figure 8. Topocentric time series east, north, and the elevation of the CAAL station with the wavelet filter result (first line)
and the Kalman filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.

Figure 9. Topocentric time series east, north, and the elevation of the CAAL station with the ARMA filter result (first line)
and the ARIMA filter result (second line). Red dots indicate Outlier R series and blue line indicates filter.
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Figure 10. Topocentric time series east, north, and the elevation of the CAAL station with the CATS result (first line), the
STL decomposition result (second line), and the STL decomposition to the CATS result (third line). In the CATS series,
black dots indicate the Outlier R series and red line indicates the CATS result.

5. Conclusions

GNSS time series analysis seeks to know the behavior and level of existing geodynamic
activity. The geodynamic model is obtained from the velocities of the displacements of
each station in the region. That is the starting point for the calculation of the stress and
strain models. The GNSS experimental process involves multiple factors that can introduce
deviations and dispersions in the values of the GNSS series and, consequently, in the
models and results obtained.

In this work, a brief review of analysis techniques and methods for GNSS time series
was carried out. Filtering, filtering–fitting, and fitting techniques were analyzed. The need
for a descriptive analysis of the RAW series was previously established. Anomalous values,
gaps, and dispersion of the series were detected. It was also used to detect changes in the
trend or seasonality of the GNSS series.

Among the exclusive filtering techniques, outliers R was more effective and adaptable
for both linear and non-linear series, whereas the processes 1 sigma and 2 sigma, especially
in non-linear cases, were not applicable to the entire series.

The following were considered as filtering–fitting techniques: Kalman,
ARMA/ARIMA, and wavelets. The Kalman and ARMA filters presented more dispersion
in the result than ARIMA and wavelets. In series fitting, Kalman and ARIMA obtained
smoother curves than ARMA and wavelets, and, therefore, they were more effective in
forecasting series. ARIMA and wavelets better adjusted those internal changes in the series
providing information on the level of geodynamic activity and the possible detection of
seismic events.

CATS-R software provided a series of adjustments, adapted to controlled changes on
antenna changes, receivers, firmware, etc. It is a very reliable technique when calculating
velocities and, especially, when fitting the elevation component. The STL package that
allowed decomposition of the time series into trend, seasonal, and reminder and was
analyzed and applied. Its versatility and precision were verified once any of the other
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techniques had been applied and the series had been purified of adverse effects (outliers,
gaps, dispersions, deviations, etc.).

Finally, there is no standardized procedure for any time series. Really, the descriptive
analysis informs about the processes to consider in its treatment.

Data Availability Statement: Data supporting reported results can be found at http://www.ign.es,
https://www.epncb.oma.be, https://renep.dgterritorio.gov.pt, https://sitmurcia.carm.es, https:
//www.juntadeandalucia.es and http://icv.gva.es.
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