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Abstract: Many geodetic measurement data can be modelled as a multivariate time series consisting
of a deterministic (“functional”) model describing the trend, and a stochastic model of the corre-
lated noise. These data are also often affected by outliers and their stochastic properties can vary
significantly. The functional model of the time series is usually nonlinear regarding the trend pa-
rameters. To deal with these characteristics, a time series model, which can generally be explained
as the additive combination of a multivariate, nonlinear regression model with multiple univariate,
covariance-stationary autoregressive (AR) processes the white noise components of which obey
independent, scaled t-distributions, was proposed by the authors in previous research papers. In this
paper, we extend the aforementioned model to include prior knowledge regarding various model
parameters, the information about which is often available in practical situations. We develop an
algorithm based on Bayesian inference that provides a robust and reliable estimation of the functional
parameters, the coefficients of the AR process and the parameters of the underlying t-distribution. We
approximate the resulting posterior density using Markov chain Monte Carlo (MCMC) techniques
consisting of a Metropolis-within-Gibbs algorithm.

Keywords: multivariate time series; nonlinear Bayesian regression model; AR process; scaled t-
distribution; partially adaptive estimation; robust parameter estimation; GNSS time series

1. Introduction

Adjustment calculus offers a rich toolbox of statistical models and procedures for pa-
rameter estimation and hypothesis testing based on given numerical observations (cf. [1]).
Such models usually consist of a deterministic functional model (e.g., a linear model de-
scribing some trend function), a correlation model (e.g., in the form of a variance-covariance
matrix or an autoregressive (AR) error process), and a stochastic model (i.e., a probability
distribution of the observation errors or the innovations of the AR error process). The
stochastic model is often taken to be some multivariate normal distribution, which, how-
ever, easily leads to erroneous estimation results if the observations are afflicted by outliers.
To take outliers into account, the normal distribution can be replaced by some outlier
distribution, for example, a heavy-tailed t-distribution (cf. [2]). A multivariate time series
model, including a nonlinear functional model and an autoregressive observation error
model with t-distributed innovations, was suggested and investigated in [3] and [4]. A
shortcoming of that model is that it does not include prior knowledge about the parameters
of the functional, correlation or stochastic model, the information about which may readily
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be available. Therefore, the current paper describes a Bayesian extension of that time
series model, which can be expected to result in more robust and more accurate parameter
estimates (cf. [5]).

A general Bayesian estimation approach in the specific context of models based
on the t-distribution was introduced by [6]. Due to the complexity of such a model, the
posterior density function must be approximated numerically or analytically. For numerical
approximation, Monte-Carlo (MC) simulation and, in particular, Markov-Chain Monte-
Carlo (MCMC) methods, which are suitable also for multivariate distributions, have been
applied routinely (cf. [7]). In particular, the Gibbs sampler and the Metropolis–Hastings
algorithm have been employed for (non-robust) Bayesian estimation of the parameters
of a linear functional model with autoregressive moving-average (ARMA) and normally
distributed errors [8]. MCMC methods have also been applied in the context of the robust
Bayesian estimation of ARMA models [9] and AR models [10], with one additional (directly
observed) mean parameter in the functional model. In both studies, outliers within the
auto-correlated errors and within the uncorrelated innovations were modeled as normally
distributed random variables with variances inflated by unknown multipliers. Thus, the
stochastic error model was based on a discrete mixture of normal distributions, not on
the t-distribution. To incorporate an automatic model selection procedure regarding the
AR/ARMA model into the adjustment, the preceding studies also included unknown index
parameters, taking the value 0 in case the corresponding AR (or MA) coefficient is 0 (or not
significant) and taking the value 1 otherwise. Prior distributions for all of the parameter
groups and the likelihood function for the data were fixed, and sampling distributions were
then derived in order to obtain a numerical approximation of the posterior distribution
for all the unknowns. In [11], an MCMC-based computational algorithm was proposed,
to facilitate Bayesian analysis of real data when the error structure can be expressed as a
p-order AR model.

The paper is organized as follows: First, the Bayesian multivariate time series model
with AR and t-distributed errors is described in detail in Section 2. It is shown how the
generic deterministic functional model, the AR process and the t-distribution model are first
combined to a likelihood function and how prior information about the model parameters
to be estimated is taken into account by means of a specified prior density. Here, we denote
unknown parameters with Greek letters, random variables with calligraphic letters, and
constants with Roman letters. Furthermore, we distinguish between a random variable
(e.g., Lt) and its realization (lt). Matrices are shown, as usual, as bold capital letters and
vectors as bold small letters. Section 3 outlines an MCMC algorithm for determining the
posterior density of the unknown parameters of the functional model, the coefficients of the
AR process and the scale parameter, as well as the degrees of freedom of the t-distribution.
In Section 4, a time series model for GNSS observations of a circle in 3D is proposed,
and the results of a Monte Carlo simulation are discussed. These findings are used to
evaluate the performance of the implemented Metropolis–Hastings-within Gibbs algorithm
in this scenario.

2. The Bayesian Time Series Model

We assume that an N-dimensional time series (Lt) = (
[
L1,t · · · LN,t

]T
) is observed

at equi-spaced time instances t without data gaps. The observation model consists of the
three interconnected model components,

Lk,t = hk,t(β1, . . . , βm) + Ek,t, (1)

Ek,t = αk,1Ek,t−1 + . . . + αk,pk
Ek,t−pk

+ Uk,t, (2)

Uk,t |ψ2
k , νk

ind.∼ tνk (0, ψ2
k , νk), (3)
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where (1) defines the “observation equations”, (2) the “error equations” and (3) defines the
probability distribution of the innovations. The parameters of this observation model are
combined within the vector,

θ =
[

βT αT ψT νT
]T

, (4)

with

β =
[
β1 · · · βm

]T (5)

α =
[
αT

1 · · · αT
N
]T

=
[
α1,1 · · · α1,p1 · · · αN,1 · · · αN,pN

]T (6)

ψ =
[
ψ1 · · · ψN

]T (7)

ν =
[
ν1 · · · νN

]T . (8)

On the one hand, the parameters θ are treated as variables of the likelihood function
fL|Θ(L|θ), defined by the observation model (1)–(3). On the other hand, the parameters θ
are viewed as a realization of a random vector Θ, having a specified pdf independent of the
observables. According to the Bayes theorem, this prior density fΘ(θ) and the likelihood
function fL|Θ(L|θ) are connected to the posterior density fΘ|L(θ|L) via proportionality re-
lationship

fΘ|L(θ|L) ∝ fΘ(θ) · fL|Θ(L|θ), (9)

which serves as the foundation of the inference of the parameters and the adjustment of
the observations. The details of this model are described in the following.

The observation equations: Equation (1) reflects the idea that geodetic measurements
Lk,t are approximated by a “deterministic” model using mathematical functions hk,t(β),
which are assumed to be partially differentiable. The index k refers to the time series
surveyed by the kth sensor or sensor component, and the time instances t = 1, . . . , n are
the same for all sensors. In some applications, the functional model hk,t(β) takes the form

hk,t(β) = Xk,tβ, (10)

of a “linear model”, where X denotes the design matrix and has a full rank. Since geodetic
observables can generally not be modeled using a deterministic model alone, random
deviations Ek,t are added to absorb the remaining effects. It is assumed that the instruments
used to survey the observables are calibrated, so that no systematic errors occur. Thus, the
expected values of the random deviations are assumed to be 0.

The error equations: Equation (2) is included to take account of auto-correlations
within each of the N time series. Since the different sensors or sensor components may have
different noise characteristics, AR processes, with individual orders p1, . . . , pN and sets of
coefficients α1, . . . , αN , are selected. The noise characteristics are assumed to be constant
throughout the measurement period. For practical purposes, the AR processes considered
are therefore required to be (asymptotically) covariance-stationary. The random variables
Uk,t are referred to as “innovations”. Since the observation window is finite, ranging from
t = 1, ..., n, the error equations involve errors at times t = 0,−1, .... To ensure asymptotic
covariance-stationarity and the computability of the recursive equations, these quantities
are set as equal to 0 (cf. [12]). This initial distortion of the AR process fades out as the
process advances in time.

The stochastic model: The innovations of an AR process are usually assumed to be
Gaussian white noise. Since the assumption of normal distributions is unrealistic in some
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geodetic applications, for example, due to outliers, the heavy-tailed t-distributions are
employed here. These are defined by the probability density function (pdf),

f (x) =
Γ
(

ν+1
2

)
Γ
(

ν
2
)√

(νπ)ψ

[
1 +

(x− µ)2

νψ2

]− ν+1
2

, (11)

where Γ is the gamma function. Since the expected values of the random deviations Ek,t
should be 0, we can also restrict the location parameter µ to 0. Since the noise of differ-
ent sensors or sensor components may exhibit different levels of variance and outliers,
each time series involves a t-distribution with individual scale parameter ψ2

k and degree
of freedom (df) νk. It should be mentioned that the alternative usage of a multivariate
t-distribution (as defined in [2]) involves a single df and would therefore not allow for the
modeling of distinct outlier characteristics within the different time series.

The likelihood function: A likelihood function fL|Θ(L|θ) can be obtained by combin-
ing the observation Equation (1), the error Equation (2) and the stochastic model of the
innovations (3). To do so, the well-known method of conditional likelihoods in connection
with AR processes with various forms of non-Gaussian innovations is applied (cf. [13–15]).
Assuming the AR processes to be invertible, the error Equation (2), in terms of their
numerical realizations, can be rewritten as “innovation equations,”

uk,t = ek,t − αk,1ek,t−1 − . . .− αk,pk
ek,t−pk

. (12)

As the errors ek,t contained in the observation Equation (1) can be expressed as

ek,t = `k,t − hk,t(β), (13)

the innovation Equation (12) become

uk,t = ek,t − αk,1(`k,t−1 − hk,t−1(β))− . . .− αk,pk
(`k,t−pk

− hk,t−pk
(β)). (14)

The conditional likelihood function is then obtained as the product of the univariate
pdf (11), evaluated at all the stochastically independent innovations uk,t with location
µ = 0, associated scale factor ψ2

k and df νk, that is,

L(θ|L) = fL|Θ(L|θ) =
N

∏
k=1

n

∏
t=1

Γ
(

νk+1
2

)
Γ
( νk

2
)√

νkπψk

[
1 +

u2
k,t

νkψ2
k

]− νk+1
2

. (15)

For the purpose of maximum likelihood (ML) estimation, the logarithm of this likeli-
hood function is easier to handle (see [3]). In that contribution, a computationally conve-
nient ML estimation of the model parameters was achieved by rewriting the t-distributions
as conditional normal distributions with latent variables; these variables play the role of
weights in an iteratively reweighted least-squares algorithm. As the main innovation of
the current contribution, the likelihood function (15) is incorporated into a Bayesian model
instead, which is described in the following.

The Bayesian model: In this contribution, both informative and non-informative prior
information is considered. The result of using a fully non-informative prior is that the
posterior density follows directly from the likelihood function. In the case of an informative
prior, a joint pdf must be specified for the random vector Θ. This task is simplified by the
assumption of stochastic independence of the parameter groups β, α, ψ and ν, so that the
factorization property,

fΘ(θ) = fΘ(β, α, ψ, ν) = fΘ(β) fΘ(α) fΘ(ψ) fΘ(ν), (16)



Eng. Proc. 2021, 5, 20 5 of 12

holds. Consequently, individual prior densities can be specified for these parameter groups.
As the prior density of β depends on the selected functional model h(β), its specification is
fixed after the introduction of the application example in Section 4. In contrast, the prior
densities for α, ψ and ν do not depend on the choice of the functional model but mainly on
the precision of the sensors or instruments employed. In the case that no prior information
is available for the employed sensors or instruments, it is still possible to define prior
densities for these three groups of parameters. Due to the assumption, in connection with
the error Equation (2) and the stochastic model (3), that the N time series is stochastically
independent, the prior density can be further simplified to

fΘ(α) = fΘ(α1) fΘ(α2) · · · fΘ(αN), (17)

fΘ(ψ) = fΘ(ψ1) fΘ(ψ2) · · · fΘ(ψN), (18)

fΘ(ν) = fΘ(ν1) fΘ(ν2) · · · fΘ(νN). (19)

Consequently, as far as the parameters ψ and ν are concerned, only univariate prior
densities fΘ(ψk) and fΘ(νk) need to be specified. When it is known that the scale factor ψ
is between ψmin and ψmax, the prior density defining the continuous uniform distribution
U(ψmin, ψmax) can be used as a weak form of prior information. The specification of the
prior for the df νk can be based, on the one hand, on the requirement νk > 2, so that
the variance of the t-distributed random variables is defined. On the other hand, the
t-distribution is practically indistinguishable from a normal distribution for dfs greater
than 120 (cf. [16]), so that the upper limit νk ≤ 120 can be fixed. In the absence of further
information about the dfs, the prior density defining the continuous uniform distribution
U(2, 120) is reasonable. The auto-correlations of a time series may, for instance, be induced
by calibration corrections within the measurement device, by movements of the measured
object, or by a combination of the two effects. Therefore, a general definition of the prior
density of the AR coefficients is not trivial. For this reason, a non-informative prior density
is specified under the additional assumption that all of the AR coefficients are stochastically
independent.

3. The Developed MCMC Algorithm

Because of the use of the Student distribution for the white measurement noise
(Equation (15)), an analytical solution of the posterior density based on the Bayes theorem
(Equation (9)) is not possible, so it can only be solved numerically. The general solution
approach is based on generating a so-called Markov Chain for the unknown posterior
density using the MCMC method. MCMC algorithms are commonly used in all fields of
statistics because of their versatility and generality. When an MCMC method is applied to
solve the posterior density function given in (9), it is usually realized with a Gibbs sampler.
An implementation of a Gibbs sampler relies on the availability of the complete conditional
pdfs of all parameters of interest in our particular problem (cf. Equation (4)). However, the
complete conditional pdfs of all parameters of interest are not readily available. In such
cases, a Metropolis–Hastings (MH) method can be incorporated within a Gibbs sampler to
draw samples from the parameters, the full conditional pdf of which cannot be analytically
determined. In this paper, we demonstrate the development of such an algorithm, known
as Metropolis–Hastings-within Gibbs. In this algorithm, the Gibbs sampler is used to
generate the Markov Chain for θ|L, and within the Gibbs sampler the MH algorithm is
used to generate random numbers. For a clearer presentation, the solution algorithm
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is encapsulated by two separate functions. For the Gibbs sampler, the outer function is
given by,

for: j = 1, . . . ,M (20)

Draw ψj|βj−1, νj−1, αj−1, L ∼ fΘ|L(ψ|β, ν, α, L)

Draw βj|ψj, νj−1, αj−1, L ∼ fΘ|L(β|ψ, ν, α, L)

Draw νj|βj, ψj, αj−1, L ∼ fΘ|L(ν|β, ψ, α, L)

Draw αj|βj, ψj, νj, L ∼ fΘ|L(α|β, ψ, ν, L)

where M is the length of the MCMC. Such a Markov chain ensures the convergence of the
distribution of the samples to the target distribution after a few burn-in periods V [17].
We observe that the full conditional pdf shown in (20) does not fit to any known pdf and,
therefore, we cannot directly draw samples from it.

However, there are two challenges to calculating the conditional posterior densities.
The first challenge is that it results from the likelihood function and the prior density.
Consequently, changing the distributional assumption for the prior density results in a
new conditional posterior density. While this challenge can be overcome with a small
amount of effort, the second challenge is much more fundamental. For the calculation of
the conditional posterior densities, several integrals have to be solved and this may not be
analytically possible. To overcome these challenges, the MH algorithm is used to draw the
required random numbers. The general algorithm for drawing a random number θ

j
i from

the posterior density fΘ|L(θ|L) follows from the following steps:

1. Generate: θnew
i ∼ N

(
θ

j−1
i , λθi

)
(21)

2. Set: θnew =
[
θ

j
1, θ

j
2, . . . , θnew

i , . . . , θ
j−1
m−1, θ

j−1
m

]T

θold =
[
θ

j
1, θ

j
2, . . . , θ

j−1
i , . . . , θ

j−1
m−1, θ

j−1
m

]T

3. Calculate: ξ = min

1,
fΘ(θnew)L(θnew|L)
fΘ

(
θold

)
L
(

θold|L
)


4. Accept or Reject: τ ∼ U(0, 1)

if τ ≤ ξ : θ
j
i = θnew

i

else : θ
j
i = θ

j−1
i ,

where m in Equation (22) denotes the length of the parameter vector. The results of the
Metropolis–Hastings-within Gibbs are M random realizations of the unknown parameters
β, α, ψ and ν from the posterior density fΘ|L(θ|L). The estimated values θ̂ for the unknown
parameters with their variance–covariance matrix (VCM) result from (cf. [5]):

θ̂i =
1

M−V

M
∑

j=V+1
θ

j
i ; Σ̂θi,s =

1
M−V

M
∑

j=V+1

(
θ

j
i − θ̂i

)(
θ

j
s − θ̂s

)
. (22)

4. Closed Loop Monte Carlo Simulation
4.1. The Framework of the Simulation

In our Closed Loop Monte Carlo simulation (CLS), we rely on the real-world appli-
cation demonstrated in [3], in which we used a multi-sensor-system (MSS) composed of
a laser scanner and two firmly attached pieces of GNSS equipment (see [18] for details).
We consider a multivariate, non-linear regression model in terms of a circle in N = 3
dimensions that has the following six parameters: two for the orientation (ϕ and ω) of
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its unit normal vector; one for the radius (r); and three for the circle center (cx, cy, cz). The
observable 3D circle points are described by

lx,t := l1,t = h1,t(β) = r cos (κt) cos (ϕ) + cx (23)

ly,t := l2,t = h2,t(β) = r cos (κt) sin (ϕ) sin (ω) + r sin (κt) cos (ω) + cy (24)

lz,t := l3,t = h3,t(β) = −r cos (κt) sin (ϕ) cos (ω) + r sin (κt) sin (ω) + cz, (25)

with t = 1, . . . , 2000 and where κt = 2π
200 · t represents fixed rotation angles around the

z-axis. In this simulation, the functional parameters are the circle parameters β, which
were assumed to take the true values

β =
[
cx cy cz r ω ϕ

]T
=
[
1716.0 3012.0 1064.0 30.0 0.0019 rad −0.0013 rad

]T . (26)

The random deviations Et were generated by the AR(2) processes

ek,t =
2

∑
j=1

αk,jek,t−1 + uk,t, for k = 1, 2, 3, (27)

with true coefficients

α1,1 = 0.57, α1,2 = 0.11, α2,1 = 0.67, α2,2 = 0.22, α3,1 = 0.35, α3,2 = 0.55.

The innovations of these processes are sampled from the scaled t-distributions

uk,t
ind.∼ tνk (0, ψ2

k), (28)

with true scale parameters

ψx := ψ1 = 0.2, ψy := ψ2 = 0.2, ψz := ψ3 = 0.4

and true dfs
νx := ν1 = 8, νy := ν2 = 10, νz := ν3 = 4.

In Equation (16), the prior density has been introduced for the general Bayes model.
In this simulation, only prior densities for the functional parameters Θ (see Equation (26))
are assumed to be known:

fΘ(β) = fΘ

(
cx, cy, cz

)
fΘ(r) fΘ(ω) fΘ(ϕ). (29)

In Equation (29), we assume that the prior information for the center of the circle, the
radius and the angles are independent of each other. The reason for this assumption is
that this information is obtained from data sheets or from calibrations. These are specified
as follows.

The prior density of the circle center: The prior for the center of the circle is the
knowledge that it must be located approximately in the middle between the observations
constituting a circle. The location parameter µc for the definition of the prior density of the
circle center is thus dependent on the observations. Therefore, we consider the prior of the
circle center as weak prior information. Hence, we use the identity matrix as a VCM for Σc.
The uncertainty of a coordinate component of the prior information of the circle center is
thus significantly larger than the assumed measurement precision of a single observation.
As a pdf for the prior fΘ

(
cx, cy, cz

)
, the multivariate normal distribution is assumed with

the expected value µc and VCM Σc.

The prior density for the radius: The prior information for the radius of the circle is
the result of a calibration measurement using a laser tracker. The manufacturer specifies the
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accuracy of a single point measurement with this instrument as the maximum permissible
error of MPEx,y,z = ±15µm + 6 µm

m . During the measurement, the diameter of the wing,
on which the GNSS antenna was mounted, was determined. For this purpose, the 3D
coordinates were measured on the left and right hand side and the Euclidean distance
was calculated, which corresponds to the diameter. In total, the radius was estimated four
times in this way. By averaging these results, µr = 30.0026 was obtained as the location
parameter for the prior density of the radius. The scale parameter for the prior is the result
of the standard deviation σr = 0.0043 of the four determined radii of the laser tracker
measurement. The measurement results of the laser tracker are assumed to be normally
distributed. Hence, the normal distribution is assumed for the prior density of the radius
of the circle.

The prior density for the rotation angles: The prior information for the rotation angles
is derived from the instrument’s levelling. The manufacturer specifies the accuracy of
the bubble level as ±0.0047 rad for a 99.9% confidence interval. It is assumed that this
information refers separately to one vial axis, so that fΘ(ω) and fΘ(ϕ) are independent of
each other. Due to the specification of the accuracy by means of the confidence interval, the
uniform distribution is used as the prior family for the angles. The limit of the confidence
interval is used as the limit for the uniform distribution, from which follows aω = −0.0047
rad and bω = 0.0047 rad. This results in the prior density:

fΘ(ω) =

{
1

bω−aω
aω ≤ ω ≤ bω

0 else
. (30)

For ϕ, the density of the prior is identical to that of the previous formula.

4.2. Results of the Simulation

The results described in this section were achieved with M = 10, 000 iterations and a
burn-in period with V = 3000 for the MCMC algorithm. We compare in the following three
estimation procedures: Bayesian informative (Bayes Inf) using prior knowledge about the
functional parameters β, Bayesian non-informative (Bayes Non-Inf) without using prior
knowledge about β and the EM (expectation–maximization) algorithm developed in [3].
Before the results of the three estimation methods from the entire CLS are compared, the
result of the Bayes Non-Inf solution is considered in more detail. For this purpose, the
result of the Markov chains from a single simulation solution is considered in Figure 1. In
total, Markov chains were generated for 18 unknown parameters. Figure 1 only shows a
representative selection of the results and is limited to the results of the z-component and
only one rotation angle. For the other components, the generated chains correspond to the
behavior of the z-component. The green dashed line in Figure 1 shows the true value of
the parameters used to generate the simulated observations. The red dashed line, or the
red cross on the secondary diagonal, show the estimated parameters resulting from the
Markov chains. On the diagonal, the distribution of the generated random numbers of the
chain is shown as a histogram. The histograms show how the generated random numbers
scatter around the estimated parameter and that the true value is close to the estimated
parameter. The secondary diagonal of the figure represents the scatter of the generated
random numbers depending on two parameters. From this distribution, the correlation of
the generated chain between two parameters can be calculated. A dependency can be seen,
especially for the scaling parameter and the df of the z-components. This also holds for the
coefficients of the AR(2) process of the z-component. The same can be noticed for the x-
and y-components. For all other parameters, the major axes of the ellipse are rather parallel
to the axes of the expected values, which corresponds to a correlation around zero. The fact
that, for example, the scale parameter and the df show stronger correlation behavior is also
to be expected. The reason for this is that, with a smaller scale factor, more observations
lie in the tails of the distribution, which leads to a smaller df. In contrast, if the scaling
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factor is large, there are fewer observations in the tails of the distribution, so a larger df can
be selected.

To compare the results of the three approaches, the adjusted observations l̂ are used in-
stead of the estimated parameters β̂. The reason for this is that, in all estimation procedures,
the estimated parameters are closer to the nominal value of the simulation parameters and,
therefore, it is difficult to judge which approach produces the best results. On the other
hand, the predicted observations l̂ include the cumulative estimation uncertainties of all
parameters β̂, allowing for an easier comparison. Furthermore, we restrict ourselves here
to the representation of the z-component because l̂z is most sensitive to inaccuracies in the
estimated angles ω̂ and ϕ̂. The results for the x- and y-components show a result similar to
that of the model shown in Figure 2 for the z-component.

Before discussing the results of the three approaches, Figure 2 is first explained. The l̂
were calculated with the estimated parameters β̂ using Equation (25). Subsequently, the
l̂z were reduced by the true value for the observations E(lz), which is why the predicted
observations scatter around 0. The dashed line is the mean value of observation lz,t, which
results from the 10,000 results of the CLS for one observation t. The dashed blue line of the
mean value of the EM algorithm cannot be seen in the figure because it is overlaid by the
dashed red line. The colored area shows, for observation t, the 95% confidence interval
that results from the 10,000 predicted observations l̂z,t. The colored lines >0 show the
maximum deviation from the true value for the observation l̂z,t that appeared in the 10,000
simulations. The colored lines <0 show the minimum deviation from the true value for the
corresponding approaches.

Figure 1. Result of the generated Markov chain after burn–in for Bayes Non–Inf: The main diagonal shows the distribution
of the generated random numbers of a parameter. The secondary diagonal shows the correlation behavior of the generated
random numbers at time j between two parameters.
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Figure 2. Result of the 10,000 CLS for the 2000 predicted observations of the z–component l̂z of the
EM algorithm, Bayes non–informative (Bayes Non–Inf) and Bayes informative (Bayes Inf).

It is expected that the result of the EM algorithm is identical to the Bayes Non-Inf
solution. This can be seen clearly in the result of the mean, where the two dashed lines (blue
and red) overlap almost completely and only deviate from each other by a maximum of
≈0.002 cm. Furthermore, the mean values of the two estimation procedures are identical to
the nominal value of 0 for all predicted observations within 10−2 cm. This deviation can be
explained by the fact that the CLS was only performed 10,000 times and not infinitely often.
For the confidence interval of the EM and Bayes Non-Inf solution, a similar behavior can be
seen as for the mean value. For most observations t, the two confidence intervals overlap
almost perfectly and, only for a few observations, a difference of at most ≈0.05 cm can be
identified. However, this identical behavior is not seen in the maximum and minimum
deviations of the blue and red lines, where the Bayes Non-Inf solution more often has
smaller minimum deviations than the EM results. The reason for this has not yet been
analysed in more detail and will be addressed in future work.

In the result of the mean value of Bayes Inf, a deviation from the mean value of EM
and Bayes Non-Inf can be seen. The solution of the mean value of Bayes Inf oscillates
cyclically around the nominal value of 0 with a maximum deviation of ±0.05 cm, whereby
this deviation is smaller by a factor of 10 than the scale factor ψz of the measurement
noise. The mean values of the EM and Bayes also oscillate around 0, but this is smaller
by a factor of 100 and therefore cannot be seen visually in Figure 2. The influence of the
prior information fΘ(β) on the observations l̂z,t can be seen well in the confidence interval
and the lines marked in black. These are clearly closer to the true value than in the EM
algorithm and Bayes Non-Inf. It is of particular interest that the maximum deviation lies in
the 95% confidence interval of EM and Bayes Non-Inf. This is not always the case for the
minimum deviation of Bayes Inf, but the black line is still closer to zero than the blue and
red lines. The reason for this is mainly due to the prior information for the angles fΘ(ω)
and fΘ(ϕ), which improves the estimation of ω and ϕ.

To compare the results l̂x, l̂y and l̂z of the three approaches, the RMSE of the true
observations is calculated for each CLS result. From these RMSE values, the statistical
measures in Table 1 were calculated for each approach. All results in the table show the
same behavior as the results previously displayed in Figure 2. The EM and Bayes Non-Inf
results are almost identical, with the small deviation explained by the different methods
used to estimate the parameters. In the Bayes Inf solution, however, all statistical measures
are smaller. For the mean, the RMSE of Bayes Inf is about 37% smaller than the RMSE of the
EM algorithm, and for the median the difference is slightly larger, at about 41%. Only for
the maximum RMSE value from the 10,000 simulations is the difference between EM and



Eng. Proc. 2021, 5, 20 11 of 12

Bayes Informative significantly smaller at about 13%, but the maximum RMSE of Bayes Inf
is still significantly smaller than the result from EM.

Table 1. Root-Mean-Square-Error (RMSE) for the predicted observations to the true observations.

Methode Mean [cm] Median [cm] Min [cm] Max [cm] σ [cm]

EM 0.107 0.103 0.013 0.337 0.041

Bayes Non-Inf 0.104 0.100 0.012 0.303 0.040

Bayes Inf 0.067 0.060 0.004 0.290 0.032

5. Conclusions

To achieve an Bayesian adaptive robust adjustment of a multivariate regression time
series with outlier-afflicted/heavy-tailed and autocorrelated errors, we described the theory
and implementation of an MCMC based approach consisting of a Metropolis-within-Gibbs
algorithm. In particular, the Gibbs sampler and the Metropolis–Hastings algorithm have
been employed for robust Bayesian estimation of the parameters of a non-linear functional
model with AR and t-distributed errors. An advantage of this procedure compared to
the EM algorithm, besides the capability to process additional prior knowledge, is that
the approximation of the posterior model parameters is feasible without linearization of
the functional model. Furthermore, the approximation of the VCM Σ̂θ of the estimated
parameters can be derived directly from the generated chains. CLS showed that the
bias of the parameter estimates and the adjusted observations, as well as the RMSE, are
significantly reduced when an informative Bayesian approach is used, but only under the
condition that good prior information, that is, information that contains the true value,
is assumed to be known. Otherwise, the prior can also have the opposite effect and may
cause the estimated parameters to deteriorate.
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