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Abstract: The publication is devoted to studying asymptotic properties of statistical estimates of the
distribution parameters u ∈ Rq of a multidimensional random stationary time series zt ∈ Rm, t ∈ Z

satisfying the strong mixing conditions. We consider estimates
^
u

δ

n

(
¯
zn

)
,
¯
zn =

(
zT

1 , . . . , zT
n
)T ∈ Rmn

that provide in asymptotic n→ ∞ the maximum values for some objective functions Qn

(
¯
zn; u

)
,

which have properties similar to the well-known property of local asymptotic normality. These

estimates are constructed by solving the equations δn

(
¯
zn; u

)
= 0, where δn

(
¯
zn; u

)
are arbitrary

functions for which δn

(
¯
zn; u

)
− grad

h
Qn

(
¯
zn; u + n−1/2h

)
→ 0 (n→ ∞) in Pn,u

(
¯
zn

)
-probability

uniformly on u ∈ U, were U is compact in Rq. In many cases, the estimates
^
u

δ

n

(
¯
zn

)
have

the same asymptotic properties as well-known M-estimates defined by equations
^
u

Q

n

(
¯
zn

)
=

arg max
u∈U

Qn

(
¯
zn; u

)
but often can be much simpler computationally. We consider an algorithmic

method for constructing estimates
^
u

δ

n

(
¯
zn

)
, which is similar to the accumulation method first pro-

posed by R. Fischer and rigorously developed by L. Le Cam. The main theoretical result of the article

is the proof of the theorem, in which conditions of the asymptotic normality of estimates
^
u

δ

n

(
¯
zn

)
are

formulated, and the expression is proposed for their matrix of asymptotic mean-square deviations

lim
n→∞

nEn,u

{(
^
u

δ
(

¯
zn

)
− u

)(
^
u

δ
(

¯
zn

)
− u

)T}
.

Keywords: random time series; estimation of distribution parameters; local asymptotical normality;
function of estimation quality; asymptotically efficient estimates

1. Introduction. Methods of Construction Asymptotically Efficient Estimates for
Parameters of Stationary Time Series

In applications of mathematical statistics to modern problems of data analysis in
natural science and technology, it is often impossible to use the classical observation
models in the form of a sequence of independent identically distributed random variables
(i.i.d. model). As a rule, the i.i.d. model does not provide sufficient accuracy of statistical
inferences about the unknown parameters of the investigated physical processes, distorted
by noise, if both of them are stationary random processes.

Thus, it is important to generalize the classical results of the statistical theory of
parameter estimation, developed for the i.i.d. model, in order to apply them to actual
practical problems in the analysis of real physical processes.
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In modern systems for analyzing physical wave fields, a large number of parameters
are simultaneously measured, and many sensors are used to improve the accuracy of the
analysis. That is, multidimensional time series zt ∈ Rm, t ∈ Z are subjected to statistical
processing, and vector parameters are estimated as a result of this processing.

For many statistical models of multivariate time series, it is impossible to synthesize

statistically efficient estimates
^
u

ef

n

(
¯
zn

)
of vector parameters u for which the standard

deviation matrices are minimal for any finite size n of observations and are equal to the
inverse Fisher information matrix:

Kef
n (u) = En,u

{(
^
u

ef

n

(
¯
zn

)
− u

)(
^
u

ef

n

(
¯
zn

)
− u

)T
}

= J−1
n (u), (1)

where Jn(u) =
∫

Rmn

(
∇u pz,n

(
¯
xn; u

))(
∇u pz,n

(
¯
xn; u

))T
p−1

z,n

(
¯
xn; u

)
d

¯
xn;

¯
xn =

(
xT

1 , . . . , xT
n

)T
∈ Rmn; ∇u pz

(
¯
xn; u

)
=

(
∂

∂uk
pz

(
¯
xn; u

)
, k ∈ 1, q

)T
;

pz

(
¯
xn; u

)
is the probability density of the observations

¯
zn.

At the same time, asymptotically efficient (AE) estimates
^
u

ae

n

(
¯
zn

)
can be constructed

for a wide class of multivariate time series with interdependent elements zt possessing a
strong mixing property [1]. For AE-estimates, equality (1) is attained asymptotically for
n→ ∞ :

Kae(u) = lim
n→∞

nEn,u

{(
^
u

ae

n

(
¯
zn

)
− u

)(
^
u

ae

n

(
¯
zn

)
− u

)T
}

= lim
n→∞

nJ−1
n (u).

They can be found in the class R of regular estimates
^
u
(

¯
zn

)
for which the random

quantities
√

n
(

^
u
(

¯
zn

)
− u

)
, u ∈ U have limit distributions with finite second moments.

This statement is one of the results of the extensive asymptotic theory of statistical inference
for random time series, which is most fully presented in [2]. Fundamental results in this
theory were obtained in the known publications [3–6]. In these books, sufficient conditions
were established under which AE-estimates exist for many probabilistic models of random
time series and continuous processes.

The main condition under which the AE-estimates can be constructed is the local

asymptotic normality (LAN) of the likelihood ratio Ln

(
¯
zn

)
of observations

¯
zn [3]. It

means that the likelihood ratio of the observations
¯
zn admits the following asymptotic

expansion:

Ln

(
¯
zn

)
= ln

pz,n

(
¯
zn ; u + n−1/2h

)
pz,n

(
¯
zn ; u

) = hT∆n

(
¯
zn ; u

)
− 1

2
hTΓn(u)h + αn

(
¯
zn ; u, h

)
,

(2)

where lim
n→∞

Γn(u) = Γ(u) = lim
n→∞

n−1Jn(u); ∆n

(
¯
zn ; u

)
∈ Rq is a family of statistics for

which probability distributions tend as n→ ∞ to the q-dimensional Gaussian distribu-
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tions with the parameters (0, Γ(u)) uniformly in u ∈ U; αn

(
¯
zn ; u, t

)
→ 0 ( n→ ∞ ) in

dPn

(
¯
zn

)
-probability uniformly in u ∈ U; |h| < c where c is any number.

Many publications, for example, [7–14], have been devoted to proving the LAN
property for various probabilistic models of time series other than the i.i.d model. The
results of research in this direction, obtained up to the end of the twentieth century, are
summarized in the monograph [2]. It was shown that the LAN property is inherent in a
wide class of multidimensional time series and continuous random processes.

The formulation of the LAN condition (2) largely determined the further development
and practical applications of the asymptotic estimation theory. In the well-known mono-
graph [6], it is shown that under the LAN condition, the maximum likelihood estimate
belongs to the classR of regular statistical estimates and is an AE-estimate.

At the same time, using the decomposition (2) of the likelihood function of observa-
tions, new AE-estimates were constructed, which differ from the traditional maximum
likelihood estimates and are computationally simpler. An elegant and, in many cases, the
most computationally simple method for constructing AE-estimates, was proposed in [3,4].
It is based on R. Fisher’s [15] idea of “improving” the quality of some “simple” estimate
to the quality of an AE-estimate. In mentioned publications, L. Le Cam showed that the
AE-estimate can be obtained using the equation:

^
u

ae

n

(
¯
zn

)
= u∗n

(
¯
zn

)
− n−1/2Γ−1

n

(
u∗n

(
¯
zn

))
∆n

(
¯
zn; u∗n

(
¯
zn

))
, (3)

where u∗n

(
¯
zn

)
is an arbitrary

√
n-consistent estimate of the parameter u for which the

quantities
√

n
(

u∗
(

¯
zn

)
− u

)
, u ∈ U, n ∈ Z have the property: for any ε > 0 there is

Cε > 0, such that sup
u∈U, n∈Z+

[
Pn,u

{∣∣∣∣√n
(

u∗
(

¯
zn

)
− u

)∣∣∣∣ > Cε

}]
< ε.

Note that Equation (3) defines a whole class of AE-estimates, the quality of which is

asymptotically equivalent to the quality of the ML-estimate, since ∆n

(
¯
zn; u

)
, Γn(u) in

the LAN expansion (2) and the
√

n-consistent estimate u∗n

(
¯
zn

)
are not unique functions.

For this reason, in many practically important cases, formula (3) allows one to obtain
AE-estimates, which are computationally much simpler than ML-estimates.

2. Construction of M-Estimates for Parameters of Stationary Time Series with Suitable
Asymptotical Properties

The AE-estimates have some disadvantages from the point of view of practical appli-

cations. First, they can be synthesized only if the probability density pn,z

(
¯
xn; u

)
of the

observations
¯
zn is fully known. In practice, some important details of this density are often

not fully defined. Only a certain class K is known to which this density belongs. Second,

the quality of AE-estimates is often unstable to deviations of the actual density pn,z

(
¯
xn; u

)
from the assumed one for which they were synthesized. Even a small deviation from the
expected density can lead to a significant loss in the accuracy of the AE-estimate.

In the publications [16,17], methods were developed for constructing estimates that
are robust to changes in the distribution of observations, and in many applications, such

robust estimates are preferable to AE-estimates. A robust estimate
^
u
(

¯
zn

)
is constructed
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by finding the global maximum of a certain objective function Qn

(
¯
zn; u

)
(a criterion of

estimation quality), which differs from likelihood function:

^
u
(

¯
zn

)
= arg max

u∈U
Qn

(
¯
zn; u

)
. (4)

In addition to robust estimates, estimates synthesized using Equation (4) arise in
other problems of mathematical statistics. The examples include Bayesian estimation
problems, estimation problems with interfering (nuisance) parameters, problems arising in
the analysis of natural and economic dynamical systems.

The estimates obtained as the maxima of some objective functions Qn

(
¯
zn; u

)
were

called “M-estimates”. Apart from books [16,17], they were considered in many other
publications, for example, in [18,19]. In most of these publications, the M-estimates were
constructed and analyzed for the i.i.d. model of random observations.

The authors are not aware of publications in which the asymptotic properties of M-
estimates were studied with a sufficient level of mathematical rigor for multidimensional
stationary random time series that have a strong mixing property. The authors are also
unaware of publications devoted to the construction of computationally simple estimates
that are asymptotically equivalent in quality to M-estimates.

In this paper, we consider an approach to solving these problems from the standpoint
of view of the asymptotic theory of statistical inference [2], which is based on Le Cam’s
concept of local asymptotically normality.

We suppose that random objective function Qn

(
¯
zn; u

)
is twice differentiable in Pn,u-

probability with respect to components of the vector u ∈ U; that is, there exist the following

family of vector statistics dn

(
¯
zn; u

)
and matrix function Fn

(
¯
zn; u

)
:

dn

(
¯
zn; u

)
=

(
dn,k

(
¯
zn; u

)
= ∂

∂uk
Qn

(
¯
zn; u

)
, k ∈ 1, q

)T
= ∇uQn

(
¯
zn; u

)
∈ Rq,

Fn

(
¯
zn; u

)
=

[
∂

∂ul
dn,k

(
¯
zn; u

)
, k, l ∈ 1, q

]
= ∆uQn

(
¯
zn; u

)
∈ Rq×q.

(5)

In this case, the M-estimate (4) is one of the roots
~
un

(
¯
zn

)
of the following equation system

with respect to the parameter u:

dn

(
¯
zn; u

)
= 0. (6)

In this paper, we show how to find the estimate
^
u

δ

n

(
¯
zn

)
, which is a root of the

equation system (6), and, at the same time, it is an
√

n-consistent estimate of the parameter

u. It is proved in Theorem 1 that under certain restrictions, such an estimate
^
u

δ

n

(
¯
zn

)
can

be found using the algorithm

^
u

δ

n

(
¯
zn

)
= u∗n

(
¯
zn

)
− n−1/2Φn

(
u∗n

(
¯
zn

))
δn

(
¯
zn; u∗n

(
¯
zn

))
, (7)

where δn

(
¯
zn; u

)
= n−1/2dn

(
¯
zn; u

)
; Φn(u) = n−1Eu

{
Fn

(
¯
zn; u

)}
; u∗n

(
¯
zn

)
is any

√
n-

consis- tent estimate of the parameter u.

Conditions are formulated in Theorem 1 on the family of statistics δn

(
¯
zn; u

)
and the

sequence of the matrix functions Φn(u) that are sufficient for the asymptotic normality of
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the estimate (7): L

{√
n
(

^
u

δ

n

(
¯
zn

)
− u

)}
→ N(0, D(u)) (n→ ∞), where the asymptotic

covariance matrix D(u) = lim
n→∞

nEu

{(
^
u

δ

n

(
¯
zn

)
− u

)(
^
u

δ

n

(
¯
zn

)
− u

)T
}

is equal to

D(u)= Φ−1(u)Ψ(u)Φ−1(u)Ψ(u) = lim
n→∞

Eu

{
δn

(
¯
zn; u

)
δT

n

(
¯
zn; u

)}
Φ(u) = lim

n→∞
Φn(u).

The corollary of Theorem 1 describes a method for constructing another estimate
~
u

δ

n

(
¯
zn

)
that has the same asymptotical distribution as the estimate (7) but does not require

an auxiliary
√

n-consistent estimate u∗n

(
¯
zn

)
.

Note that the statements of Theorem 1 and the corollary were formulated earlier
in [20]. In our paper, the above statements are proved under more general assumptions,
and simpler proofs are given.

Theorem 1. A. There exists a
√

n-consistent estimate u∗n

(
¯
zn

)
of the parameter u.

B. Let the family of statistics δn

(
¯
zn, u

)
∈ Rm, u ∈ U, and the sequence of positive definite

symmetric q× q-matrix functions Φn(u) satisfy the following constraints:

B1. For each value of the parameter u ∈ U, the sequence of statistics δn

(
¯
zn, u

)
is asymptoti-

cally normal with zero mean and the covariance matrix Ψ(u):

L

{
δn

(
¯
zn, u

)}
→ N (0, Ψ(u))(n→ ∞)

where Ψ(u) = lim
n→∞

Eu

{
δn

(
¯
zn, u

)
δT

n

(
¯
zn, u

)}
.

B2. For each value of the parameter u ∈ U, the following asymptotic expansion of the statistic

δn

(
¯
zn, u

)
holds:

δn

(
¯
zn; u + n−1/2h

)
= δn

(
¯
zn; u

)
+ Φn(u)h + βn

(
¯
zn; u, h

)
, |h| < c f or ∀c;

where sup
u∈U, |h|<c

Pn,u

{∣∣∣∣βn

(
¯
zn; u, h

)∣∣∣∣ > ε

}
→ 0 (n→ ∞) for any ε > 0;

inf
n∈Z+ , u∈U

detΦn(u) > d; lim
n→∞

sup
u∈U
‖Φ−1

n (u)−Φ−1(u)‖ = 0; sup
u∈U
‖Φ−1(u)‖ < C;

Φ−1(u) is a continuous function of u ∈ U.
Then the following statement is true:

For any
√

n-consistent estimate u∗n

(
¯
zn

)
of the parameter u ∈ U, the statistic

^
u

δ

n

(
¯
zn

)
= u∗n

(
¯
zn

)
− n−1/2Φ−1

n

(
u∗n

(
¯
zn

))
δn

(
¯
zn; u∗n

(
¯
zn

))
(8)

is the
√

n-consistent and asymptotically normal estimate of the parameter u ∈ U with the moments
(0, D(u)):

L

{√
n
(

^
u

δ

n

(
¯
zn

)
− u

)}
→ N(0, D(u)) (n→ ∞)
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where D(u) = Φ−1(u)Ψ(u)Φ−1(u).

Corollary 1. (a) Let, for any n ∈ Z+, a statistic
~
u

δ

n

(
¯
zn

)
be the root of the equation δn

(
¯
zn; u

)
=

0 with respect to the parameter u ∈ U with probability equal to 1.

(b) Let the statistic
~
u

δ

n

(
¯
zn

)
also is a

√
n-consistent estimate of the parameter u ∈ U. Then

the statistic
~
u

δ

n

(
¯
zn

)
is asymptotically normal with the moments (0, D(u)).

Remark 1. (a) The statement similar to Statement (T1) of Theorem 1 was proved in [3,4] in the case

when the objective function Qn

(
¯
zn; u

)
is the likelihood function of

¯
zn having the LAN property

(2). In this case δn

(
¯
zn; u

)
≡ ∆n

(
¯
zn; u

)
, the matrix function Φn(u) ≡ Γn(u) and

L

{
∆n

(
¯
zn; u

)}
→ N(0, Γ(u)) (n→ ∞); Γ(u) = lim

n→∞
n−1Jn(u),

where Jn(u) is the Fisher matrix. It follows from Theorem 1, that in this case

D(u) = Γ−1(u)Γ(u)Γ−1(u) = Γ−1(u).

Consequently, the statistic

^
u

∆

n

(
¯
zn

)
= u∗n

(
¯
zn

)
− n−1/2Γ−1

n

(
u∗n

(
¯
zn

))
∆n

(
¯
zn; u∗n

(
¯
zn

))
is asymptotically normal with the parameters (0, Γ(u)), and hence, it is the asymptotically efficient
estimate of the parameter u.

(b) It follows from the corollary of Theorem 1 that a statistic
~
u

∆
n

(
¯
zn

)
, which has the property:

∆n

(
¯
zn;

~
u

∆

n

(
¯
zn

))
= 0 with probability equal to one, and at the same time is a

√
n-consistent esti-

mate of the parameter u ∈ U, is asymptotically normal with the moments (0, Γ(u)). Consequently,

the statistic
~
u

∆
n

(
¯
zn

)
is the asymptotically efficient estimate of the parameter u ∈ U.

Thus, Theorem 1 is, in some sense, an extension of Le Cam’s results to the case of

an arbitrary objective function Qn

(
¯
zn; u

)
whose gradient satisfies conditions B1, B2 of

Theorem 1.

3. Proof of Theorem 1

In the course of proving Theorem 1, we will omit, if it is obvious, the dependence of

functional quantities on the observations
¯
zn and sometimes denote their dependence on

the parameter u by a subscript.

In these notations, the definition of the estimate
^
un

(
¯
zn

)
can be written as

^
un= u∗n − n−1/2Φ−1

n (u∗n)δn(u∗n).
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Then we can write the following chain of equalities:

√
n
(

^
un − u

)
=
√

n(u∗n − u)−Φ−1
n (u∗n)δn(u∗n) =

= −Φ−1
n (u)δn(u) +

[√
n(u∗n − u)−Φ−1

n (u∗n)δn(u∗n) + Φ−1
n (u)δn(u)

]
=

= −Φ−1
n (u)δn(u) + ξn,u(u∗n),

(9)

where ξn,u(u∗n) =
√

n(u∗n − u) + Φ−1
n (u∗n)[−δn(u∗n) + δn(u)]. It follows from (9):

Φn(u
∗
n)ξn,u(u∗n)= −δn(u∗n) + δn(u) + Φn(u

∗
n)
√

n(u∗n − u)= ρn,u(u∗n). (10)

By denoting τ∗n,u =
√

n(u∗n − u), we obtain from (10):

δn
(
u + τ∗n,u/

√
n
)
− δn(u) = Φn

(
u + τ∗n,u/

√
n
)
τ∗n,u− ρn,u

(
τ∗n,u

)
, (11)

where the random quantities τ∗n,u, n ∈ Z+, u ∈ U have the property: for any ε > 0 there is
Sε > 0 such that sup

u∈U, n∈Z+

[
Pn,u

{∣∣τ∗n,u
∣∣ > Sε

}]
< ε.

At the same time, from condition B2 of Theorem 1, we obtain:

δn

(
¯
zn; u + n−1/2h

)
− δn

(
¯
zn; u

)
= Φn(u)h + βn,u

(
¯
zn; h

)
, (12)

where sup
u∈U, |h|<c

Pn,u

{∣∣∣∣βn,u

(
¯
zn; h

)∣∣∣∣ > ε

}
→ 0 (n→ ∞) .

The comparison Equations (11) and (12) allow us to prove the following Lemma.

Lemma 1. Under the conditions of Theorem 1, the following convergences take place for any ε > 0:
(a) lim

n→∞
sup
u∈U

Pn,u{|ρn,u(u∗n)| > ε} = 0, (b) lim
n→∞

sup
u∈U

Pn,u{|ξn,u(u∗n)| > ε} = 0.

The proof of Lemma 1 is given in Section 5.
The following statement will be needed below.

Lemma 2. Let some random variables ϕn and ηn have the properties:
(a) lim

n→∞
Ln{ϕn} = lim

n→∞
Pn{ϕn < x} = F(x); (b) for any ε > 0 lim

n→∞
Pn{|ηn| > ε} = 0.

Then lim
n→∞

Ln{ϕn + ηn} = lim
n→∞

Pn{ϕn + ηn < x} = F(x).

The proof of Lemma 2 is quite simple, and we omit it.
Taking into account Equations (9)–(12) and statements of Lemmas 1 and 2, we can

write the following equalities:

L

{√
n
(

^
un − u

)}
= lim

n→∞
L
{

Φ−1
n (u)δn(u) + ξu,n

}
= lim

n→∞
L
{

Φ−1
n (u)δn(u)

}
,

where the existence of the limits follows from conditions B1, B2 of Theorem 1. According
to conditions B1 of Theorem 1, we have:

lim
n→∞

L{δn(u)} = N(0; Ψ(u)) where Ψ(u) = lim
n→∞

En
{

δn(u)δT
n (u)

}
Therefore:
lim

n→∞
L
{

Φ−1
n (u)δn(u)

}
= N(0; D(u)), where D(u) = Φ−1(u)Ψ(u)Φ−1(u). �
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4. Proof of Corollary

Under the conditions B1, B2 of Theorem 1, the statistic
^
u

δ

n

(
¯
zn

)
in Equation (8) is

asymptotically normal with the moments (0, D(u)) for any
√

n-consistent estimate u∗n

(
¯
zn

)
.

Consequently, due to condition (b) of the corollary, the statistic

^
u

δ

n

(
¯
zn

)
=

~
u

δ

n

(
¯
zn

)
+ n−1/2Φ−1

n

(
~
u

δ

n

(
¯
zn

))
δn

(
¯
zn;

~
u

δ

n

(
¯
zn

))
is asymptotically normal with the moments (0, D(u)).

But by virtue of condition (a) of the corollary, we have that
^
u

δ

n

(
¯
zn

)
=

~
u

δ

n

(
¯
zn

)
with

probability equal to one. Hence, the statistic
~
u

δ

n

(
¯
zn

)
is asymptotically normal with the

moments (0, D(u)). �

5. Proof of Lemma 1

(a) For any ε > 0, q > 0 and u ∈ U, we can write the following equation:

Pn,u{|ρn,u(τ∗n )| > ε} =
= Pn,u

{
|ρn,u(τ∗n )| > ε ∩

∣∣τ∗n,u
∣∣ ≤ q

}
+ Pn,u

{
|ρn,u(τ∗n )| > ε ∩

∣∣τ∗n,u
∣∣ > q

}
.

(13)

Let denote Pn,u
(
{|ρn,u(τ∗n )| > ε} |

{∣∣τ∗n,u
∣∣ < q

})
the conditional probability of the

event {|ρn,u(τ∗n )| > ε} under the condition of the event
{∣∣τ∗n,u

∣∣ < q
}

. Then (13) can be
rewritten as:

Pn,u{|ρn,u(τ∗n )| > ε}= Pn,u
(
{|ρn,u(τ∗n )| > ε} |

{∣∣τ∗n,u
∣∣ ≤ q

})
Pn,u

{∣∣τ∗n,u
∣∣ ≤ q

}
+

+Pn,u
(
{|ρn,u(τ∗n )| > ε} |

{∣∣τ∗n,u
∣∣ > q

})
Pn,u

{∣∣τ∗n,u
∣∣ > q

}
.

(14)

According to (11), there is Cε > 0 such that sup
u∈U, n∈Z+

[
Pn,u

{∣∣τ∗n,u
∣∣ > Cε

}]
< ε for any

ε > 0. It follows then from (14) that for any ε > 0 and u ∈ U

Pn,u{|ρn,u(τ
∗
n )| > ε}<Pn,u

(
{|ρn,u(τ

∗
n )| > ε} |

{∣∣τ∗n,u
∣∣ < Cε

})
, (15)

where ρn,u
(
τ∗n,u

)
= δn

(
u + τ∗n,u/

√
n
)
− δn(u)−Φn

(
u + τ∗n,u/

√
n
)
τ∗n,u.

According to (12), for any ε > 0, u ∈ U and |h| < Cε

sup
u∈U

Pn,u

{∣∣∣∣βn,u

(
¯
zn; h

)∣∣∣∣ > ε

}
→ 0 (n→ ∞), (16)

where βn,u

(
¯
zn; h

)
= δn

(
¯
zn; u + n−1/2h

)
− δn

(
¯
zn; u

)
−Φn(u)h,

It follows from (15), (16) that for any ε > 0 lim
n→∞

sup
u∈U

Pn,u{|ρn,u(u∗n)| > ε} = 0.

(b) Since |ξn,u(u∗n)| ≤ ‖Φ−1
n,u(u∗n)‖|ρn,u(u∗n)|, to prove statement (b) of Lemma 1, it suf-

fices to check that ‖Φ−1
n (u∗n)‖ is bounded in probability. Since Φ−1

n (u) satisfies conditions
B2 of Theorem 1, for any ε > 0 there exists Cε > 0 that for all n the following inequality
holds: Pn,u

{
‖Φ−1

n,u(u∗n)‖ ≥ Cε

}
< ε. So, we can write:

Pn,u{|ξn,u(u∗n)| > ε} =Pn,u
(
{|ρn,u(u∗n)| > ε} ∩

(
‖Φ−1

n,u(u∗n)‖ < Cε

))
+

+Pn,u
(
{|ρn,u(u∗n)| > ε} ∩

{
‖Φ−1

n,u(u∗n)‖ ≥ Cε

})
≤

≤ Pn,u
(
{|ρn,u(u∗n)| > ε} ∩

(
‖Φ−1

n,u(u∗n)‖ < Cε

))
+ ε.

Since |ρu,n(u∗n)| satisfies statement (a) of Lemma 1, one can find a number Nε such that
sup

u∈U, n>Nε

Pu,n{|ξu,n(u∗n)| > ε}< 2ε. �
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6. Conclusions

The paper investigates the asymptotic properties of statistical estimates for the vector
parameter u ∈ Rq of a stationary multidimensional random time series zt ∈ Rm, t ∈ Z

satisfying the strong mixing conditions. We have considered estimates
~
u
(

¯
zn

)
that are

solutions of the equations ∇uQn

(
¯
zn; u

)
= 0,

¯
zn =

(
zT

1 , . . . , zT
n
)T, where Qn

(
¯
zn; u

)
is

some objective function for which ∇uQn

(
¯
zn; u

)
satisfies the constraints of Theorem 1.

We have proved that under these constraints, the estimates
~
u
(

¯
zn

)
are
√

n-consistent and

asymptotically normal with a limit covariance matrix uniquely determined by the objective

function Qn

(
¯
zn; u

)
.

The results of this paper are a generalization of the methods for constructing and
analyzing the asymptotic properties of M-estimates, which were previously studied for the
case of independent identically distributed observations.
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