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Abstract: In this paper, we want to find a continuous function fitting through the discrete covariance
sequence generated by a stationary AR process. This function can be determined as soon as the
Yule–Walker equations are found. The procedure consists of two steps. At first the inverse zeros of the
characteristic polynomial of the AR process must be fixed. The second step is based on the fact that an
AR process can also be seen as a difference equation. By solving this difference equation, it is possible
to determine a class of functions from which a candidate for a continuous covariance function can be
determined. To analyze if this function is applicable as a positive definite covariance function, it is
analyzed mathematically in view of the power spectral density compared to the characteristics of the
power spectral density for the discrete covariances. Then it is shown that this function is positive
semi-definite. At the end, a simulation of a stationary AR(3) process is elaborated to illustrate the
derived properties.

Keywords: AR process; continuous covariance function; Fourier transform; power spectral density;
positive definiteness; signal prediction

1. Introduction

In geodesy the observations or analyzed signals are often discrete measurements
which repeat at regular distances. For example, deformation observations (repeating in
time) or data from satellite missions such as GOCE (repeating in time and space). It is
a common way to describe regular and equidistant signals by auto regressive moving
average (ARMA) processes [1–5].

Within this contribution we focus on the analysis of the AR part. This AR part defines
the causal link between an observation and its predecessors. Additionally, Least Squares
Collocation (LSC) (see e.g., [6–8]) and kriging [9,10] are benefiting from the use of AR
processes. For example, the inverse of a covariance matrix, based on AR process, is a band
matrix witch bandwidth equals the order of the AR process (see e.g., [11]).

However, to activate the full potential of LSC a continuous covariance function is
indispensable. With this function it will be possible to predict a pseudo signal between the
observations. Furthermore, it is possible to predict the signal outside the observation field
and not only for a multiple of the sampling rate. Moreover, refs. [12,13] used a continuous
covariance function to switch from one functional to another (Like using sea level heights
to calculate sea level changes which are proportional to the stream velocity).

In this paper, we want to find an analytical description of a continuous function fitting
through the discrete sequence of covariances generated by any stationary AR process. This
function is derived from the coefficients of the AR process and the discrete covariances
using a system of equations with a unique solution. The resulting function should be
positive definite, and its spectrum is expected to correspond to the spectrum of the discrete
AR process. It will turn out that this function is the continuous solution of the difference
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equation and correctly interpolates the discrete covariance sequence with appropriate basis
functions, indeed following sampling theory/convolution theorem. In the end an example
is given by a simulated AR process and the accompanying continuous covariance function
as well as the two spectra are estimated.

2. Continuous Covariance Function

To find a suitable covariance function for any stationary AR process the definition of
AR processes is a good starting point. Especially the transfer from the AR process to the
difference equation approach will lead us to the continuous representation we looked for
(The following definitions could be found in [14–18]. Here the notation of [17] is used).

2.1. Construction of a Continuous Covariance Function

The process St is called one-dimensional AR process of order p (AR(p) process) if it is
described by the recursive equation

St = α1St−1 + α2St−2 + ... + αpSt−p + Et (1)

where α1, α2, ..., αp are the coefficients of the AR process and Et is a i.i.d. sequence with
variance σ2

E [17] (p. 58, Equation (3.4.31)). We assume that αp 6= 0, as otherwise the AR(p)
process is also an AR(p− 1) process so that AR(p) is not well-defined (In addition, if αp = 0
some formulas in this paper cannot be used).

An important quantity is the zeros (ζl) of an AR(p) process defined by the zeros of the
characteristic polynomial

χ(x) = 1− α1x1 − α2x2 − ...− αpxp (2)

= (x− ζ1)(x− ζ2)...(x− ζp),

see e.g., [17] (p. 58, Equation (3.4.32)).
An alternative definition is given by the auxiliary equation if we interpret the AR process

as a difference equation which has the general solution (see [19], p. 134, Equation (3.33))

b(x) = xp − α1xp−1 − α2xp−2 − ...− αp (3)

= (x− p1)(x− p2)...(x− pp).

These zeros pl only occur as real values or in pairs of complex conjugated zeros. Bear
in mind that the zeros of the characteristic polynomial from Equation (2) are linked to the
zeros of the auxiliary equation (cf. Equation (3)) by ζl = 1/pl . AR processes are stationary
if and only if the ζl are outside the unit circle, such that |pl | < 1. In the following we will
restrict to pl for simplicity.

With this definitions in mind, the discrete covariances Σj of an AR(p) process, are linked
with each other by the Yule–Walker (YW) equations (see e.g., [17], p. 59, Equation (3.4.36)), i.e.,

Σ0 = α1Σ1 + α2Σ2 + ... + αpΣp + σ2
E (4)

Σj = α1Σ|j−1| + α2Σ|j−2| + ... + αpΣ|j−p| if j 6= 0. (5)

The YW equation of higher order than 0 (Equation (5)) are basically homogeneous
difference equations of order p,

Σj − α1Σ|j−1| − α2Σ|j−2| − ...− αpΣ|j−p| = 0. (6)

The general solution to the difference equation can be expressed by the powers of the
zeros pl of the auxiliary Equation (3). The particular solution is fixed by the boundary con-
ditions using the discrete covariances determined from the YW equations (cf. Equation (5)),
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Σj =
p

∑
l=1

Al p|j|l . (7)

Here Al are coefficients which are complex if and only if the corresponding pl is
complex. Furthermore, if there is a pair of complex conjugated pl then Al occur also as
complex conjugated pairs (see e.g., [18], p. 134, Equation (3.5.44) or [19], p.163, f.).

At this point a new but now continuous function is defined, which can be seen as the
continuous covariance function γ(h) : R→ R for any AR(p) process,

γ(h) :=
p

∑
l=1

Al p|h|l . (8)

Here Al and pl are the same as in Equation (7), but the domain changed. j ∈ N0 is
replaced by h ∈ R.

Attentive readers will have noticed that γ(h) is complex if any pl ∈ R−. Then
γ(h) ∈ C for all h /∈ N0. One important convention that will help with this inconsistency is
the use of the real part Re(γ(h)) of the complex function (see Figure 1). This condition will
not have any impact if γ(h) is real (what is mostly the case), and furthermore a covariance
function for real valued signals is defined to be a function in R not in C.
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Correlations of the pole -0.8 with different Correlation funktions

Discrete Correlations

real part of the correlation funktion

imagenary part of the correlation funktion

sum of the real and imagenary part of the correlation funktion

Figure 1. Real part, imaginary part and sum of both parts of a complex covariance function of an AR
process with pole −0.8.

2.2. Properties of the Continuous Covariance Function

Since with γ(h) from Equation (8) a suitable function is found to fit through the
discrete covariances from Equation (7), we want to analyze the power spectral densities
of the continuous and the discrete functions. On this basis we can demonstrate that the
Fourier transform of the continuous covariance function is positive semi-definite.

Initially the problem restricted to AR processes of order 1 and order 2 with two
complex conjugated zeros. On the one hand any AR(p) process can be dissected into a
product of AR(1) and AR(2) processes. This is a linear function, so the power spectral
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function is the product of the corresponding AR(1) processes and AR(2) processes. On
the other hand, Equation (8) shows that the covariance function is a weighted sum of the
real valued zeros, or pairs of complex conjugated zeros. So, the zeros are also in a linear
relation, and so is the Fourier transform. So, it is only necessary to examine the spectrum
and the Fourier transform for the first order AR process and second order AR process with
two complex conjugated zeros.

For these specific types of AR processes there is an analytical solution to switch from
AR coefficients αl to the zeros pl (see [20]),

for order p = 1 α1 = p1 (9)

and for order p = 2

{
α1 = p1 + p2

α2 = −p1 p2
with p1 = p∗2 . (10)

2.2.1. Power Spectral Density

The power spectral density for an AR(p) process is well known (see e.g., [16], p. 244,
Equation (11.20)) and is described by the transfer function

H2(ν) =
σ2
E

|1−∑
p
l=1 αle−i2πνl |2

. (11)

In consideration of Equations (9) and (10) the power spectral density for any AR(1)
process and AR(2) process with complex conjugated zero can be calculated explicitly. So,
the power spectral density AR(1) process is generated via

H2(ν) =
σ2
E

1− 2p1 cos(2πν) + p2
1

. (12)

For the AR(2) process with zeros p1 = p∗2 the power spectral density is a little more
complicated and turns out to be

H2(ν) =

σ2
E

1− 2(p1 + p2) cos(2πν) + p1 p2(2 + 2 cos(4πν)− (p1 + p2) cos(2πν) + p1 p2) + p2
1 + p2

2
. (13)

Using the Fourier transform of the covariance function γ(h)

Γ(ν) := F{γ(h)}(ν) =
p

∑
l=1

Al
−2 ln(pl)

(ln(pl))
2 + (2πν)2 (14)

is an alternative way to derive the power spectral density (For further derivations of the
Fourier transform see Appendix A). However, H2(ν) 6= Γ(ν). Especially Equation (11)
showsH2(ν) as a function whose only parameter ν arise as power of the complex function
e−i2πl . Therefore H2(ν) is a repetitive function with period 1. In contrast, Equation (14)
shows Γ(ν) is aperiodic function with lim

ν→∞
Γ(ν) = 0. To understand this circumstance two

theorems are of importance:

1. The discrete covariances of an AR(p) process (Σj) are equivalent to the product of the
Dirac comb with the continuous covariance function γ(h).

2. The convolution theorem shows that multiplication in time domain results in convo-
lution in frequency domain.

Combining these two pieces of information shows indeed thatH2(ν) 6= Γ(ν) but

H2(ν) = Γ(ν) ∗
(

∞

∑
k=−∞

δ(x− k)

)
(15)
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where ∑∞
k=−∞ δ(x− k) is the Dirac comb of distance 1 and Γ(ν) ∗

(
∑∞

k=−∞ δ(x− k)
)

is the
convolution of Γ(ν) and the Dirac comb. The transitions from continuous functions to
discrete sequences as well as the resulting Fourier transforms are shown in Figure 2 (For a
more detailed method of calculation for AR(1) and AR(2) processes see Appendix C).

Figure 2. Magic square for the convolution of a continuous covariance function with a Dirac comb.

2.2.2. Positive Semi-Definite Function

Equation (15) shows that knowing ifH2(ν) is positive semi-definite is not sufficient
to guarantee that the Fourier transform of the continuous function γ(h) is positive semi-
definite too. Therefore, the explicit Fourier transforms of the AR(1) and AR(2) process
are derived here. For the case of the AR(1) process it is easy to see that for the Fourier
transform of the covariance function γ(h)

Γ(ν) =
σ2
E

1− p2
−2 ln(p)

(ln(p))2 + (2πν)2 > 0 ∀ν ∈ R. (16)

holds (For the derivation of this formula see Appendix B.1). Neither the squared terms
could be less than 0 nor 1− p2 or − ln(p) due to the fact that p lies within the unit circle.

For the AR(2) process things are not that obvious. In Appendix B.2 it is demonstrated
that the Fourier transform of γ(h) is

Γ(ν) = 2Re

(
−σ2
E p1

(p2 − p1)(1− p2
1)(1− p1 p2)

−2 ln(p1)

(ln(p1))2 + (2πν)2

)
. (17)

To work with complex valued fractions, it is necessary to eliminate the imaginary part
in the denominator. This is done by multiplying each term of the sum with the complex
conjugated denominator divided by itself. Afterwards it is simple to pick the real part. To
simplify the formula, we use the polar coordinates p1 = reiφ, and p2 = re−iφ with 0 < r < 1
and 0 ≤ φ ≤ π. So, it can be shown that the numerator is positive (Γ(ν) ≥ 0) if and only if

− ln(r) coth(− ln(r))︸ ︷︷ ︸
:= f (r)

≥ φ cot(φ)︸ ︷︷ ︸
:=g(φ)

(18)

The function f (r) and g(φ) are displayed in Figures 3 and 4 (Since g(φ) = g(−φ), the
negative values of φ are not needed). On the one hand f (r) is a declining function with
infimum 1. On the other hand, the function g(φ) is also declining, with a maximum of 1.
Thus, infimum f (r) ≥ max g(φ), which evaluate that Equation (18) is always satisfied.
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Figure 3. The function f (r) = − ln(r) coth(− ln(r)) for 0 < r < 1.
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Figure 4. The function g(φ) = φ cot(φ) for 0 ≤ φ ≤ π, and an enlarged section of the beginning.

3. Simulation

To visualize the results from Section 2 of an AR(3) process with two complex con-
jugated zeros was generated as an example. First to guarantee stationarity the roots are
chosen as p1

p2
p3

 =

−0.252− 0.126i
−0.252 + 0.126i

0.306

.

Let the variance of the white noise be σ2
ε = 1. After deriving the coefficients αl ,

l ∈ {1, 2, 3}, using Equation (3), we estimate the discrete covariances (Σj) of the AR(3)
process by the reorganized YW equations (see [21], p. 32, Equation (183)). With Equation (8)
a continuous function γ(h) is fitted through the discrete covariances (see the left upper
corner of Figure 5). Subsequently the power spectral density is set first by Equation (11)
using the coefficients αl and secondly by Equation (14). For the second step the coefficients
Al are estimated by solving the system of equationsΣ0

Σ1
Σ2

 =

 1 1 1
p1 p2 p3
p2

1 p2
2 p2

3

A1
A2
A3

. (19)

Here the zeros pl and covariances Σl are known. Each row represents Equation (7) for
l ∈ {1, 2, 3}. The coefficients Al are used in Equation (8) to estimate the power spectral
density of the continuous covariance function. It must be mentioned that this example is
an extreme one where the Fourier transform of the continuous covariance function has
high values for frequencies higher the Nyquist frequency νn = 0.5. The Fourier transform
of the continuous covariance function is not periodic at all (compare right upper corner of
Figure 5). However, periodicity is the characteristic of the spectral density of a discrete AR
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process. Therefore, the periodicity is a result of the convolution of the Dirac comb and Γ(ν).

Figure 5. Magic square for a convolution of a continuous covariance function of an AR(3) process
with a Dirac comb.

4. Conclusions and Outlook

In this paper, it was shown that the choice of a valid continuous covariance function
for AR(p) processes is given by the function

γ(h) =
p

∑
l=1

Al p|h|l .

Here h ∈ R is the lag, pl are the roots of the characteristic polynomial, and Al follows
from the unique solution of Equation (14) for p arbitrarily chosen discrete covariances Σj1 ,
Σj2 , ..., Σjp (with ji ∈ N0, and ji 6= jk ⇔ i 6= k):


A1
A2
...
Ap

 =


pj1

1 pj1
2 ... pj1

p

pj2
1 pj2

2 ... pj2
p

... ... ... ...
pjp

1 pjp
2 ... pjp

p


−1

Σj1
Σj2
...

Σjp

.

Due to the convolution theorem, the power spectral density of γ(h) might be different
to the power spectral density of the discrete AR(p) process. Nevertheless, the proof was
given that γ(h) is still positive semi-definite (cf. Section 2.2.2), and consequently meets all
conditions for a suitable covariance function. The Fourier transforms Γ(ν) andH2(ν) may
not vary much for ν ∈ [−1, 1] and the simulation (see Section 3) is an extreme example.
Anyway γ(h) is an exponential function, so it is easy to use it as functional for covariance
function propagation or LSC.

In further works the continuous covariance function γ(h) could be extended to a
function for an autoregressive moving average (ARMA) process to examine its properties.
It is not yet demonstrated that the oscillation of Re(γ(h)) leads towards the minimal
frequency if there is a real negative zero (pl = 0 for any l).
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Appendix A. General Fourier Transform of an AR(p) Process

In this part the Fourier transform of a function γ(h) = ∑
p
l=1 Al p|h|l with h ∈ R

is computed,

Γ(ν) =
∫ ∞

−∞

p

∑
l=1

Al p|h|l ei2πνhdh =
p

∑
l=1

Al

∫ 0

−∞
p−h

l ei2πνhdh︸ ︷︷ ︸
1

− ln(pl )−i2πν

+
∫ 0

−∞
ph

l ei2πνhdh︸ ︷︷ ︸
1

− ln(p)+i2πν

=
p

∑
l=1

Al
−2 ln(pl)

(ln(pl))2 + (2πν)2

Please note that Al and pl might be complex, but this will not have any influence on
the equations.

Appendix B. Explicit Fourier Transform of the AR(1) Process and AR(2) Process with
Two Complex Conjugated Zeros

In this section, the explicit Fourier transform Γ(ν) of the continuous covariance func-
tion γ(h) for the orders p = 1 and p = 2 are given as function of h, and the zeros pl .

Appendix B.1. Fourier Transform of the Continuous Covariance Function of AR(1) Processes

First the discrete covariance Σ0 must be computed as function of the zero p1. This is
done by the reorganized YW equations (see [21], p. 32, Equation (183)):([

−1 0
α1 −1

]
+

[
0 α1
0 0

])−1[−σ2
ε

0

]
=

[
Σ0
Σ1

]
⇔ 1

1− α2
1

[
−1 −α1
−α1 −1

][
−σ2

ε

0

]
=

[
Σ0
Σ1

]

⇒ Σ0 =
σ2

ε

1− α2
1

Further Equation (7) gives Σ0 = A1 and in combination with Equation (9) the deduc-
tion is

A1 =
σ2

ε

1− p2
1

.

Insert A1 in Equation (14) for order p = 1 to obtain

Γ(ν) =
σ2

ε

1− p2
1

−2 ln(p1)

(ln(p1))
2 + (2πν)2 .
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Appendix B.2. Fourier Transform of the Continuous Covariance Function of AR(2) Processes with
Two Complex Conjugated Zeros

Like in the last subsection the discrete covariances Σ0 and Σ1 are computed by the
reorganized YW equations:−1 0 0

α1 −1 0
α2 α1 −1

+

0 α1 α2
0 α2 0
0 0 0

−1−σ2
ε

0
0

 =

Σ0
Σ1
Σ2


⇔ σ2

ε

−α2
2 + α2

2 + α2(1 + α2
1) + α2

1 − 1

 1− α2
α1

α2
1 − α2

2 + α2

 =

Σ0
Σ1
Σ2

.

With the transformation from α1, α2 to p1, p2 (cf. Equation (10)) the discrete covariances
are set by

Σ0 =
−(1 + p1 p2)σ

2
ε

(p2
1 − 1)(1− p2

2)(1− p1 p2)
Σ1 =

−(p1 + p2)σ
2
ε

(p2
1 − 1)(1− p2

2)(1− p1 p2)
.

This time Equation (7) is an equation system in the two variables A1 and A2. Here the
first and second discrete covariances (Σ0, Σ1) are used:[

Σ0
Σ1

]
=

[
1 1
p1 p2

][
A1
A2

]
⇔
[

A1
A2

]
=

[
1 1
p1 p2

]−1[Σ0
Σ1

]
⇔
[

A1
A2

]
=

1
p2 − p1

[
p2 −1
−p1 1

][
Σ0
Σ1

]

⇒ A1 =
p2Σ0 − Σ1

p2 − p1
; ⇒ A2 =

p1Σ0 − Σ1

p1 − p2

Including the solution for Σ0 and Σ1 to obtain A1 and A2 as function of p1 and p2
leads to

A1 =
−p1σ2

ε

(p2 − p1)(1− p2
1)(1− p1 p2)

; A2 =
−p2σ2

ε

(p1 − p2)(1− p2
2)(1− p1 p2)

Due two p1 = p∗2 , inserting A1 and A2 in Equation (14) leads to the sum of two
complex conjugated values. This is equally to two times the real part of the complex value:

Γ(ν) = A1
−2 ln(p1)

(ln(p1))
2 + (2πν)2 + A2

−2 ln(p2)

(ln(p2))
2 + (2πν)2

= 2Re

(
A1

−2 ln(p1)

(ln(p1))
2 + (2πν)2

)

= 2Re

(
−σ2
E p1

(p2 − p1)(1− p2
1)(1− p1 p2)

−2 ln(p1)

(ln(p1))2 + (2πν)2

)

Appendix C. Convolution of the Fourier Transform of a Continuous Covariance
Function of an AR Process with a Dirac Comb

The convolution theorem means if F(ν) and G(ν) are the Fourier transforms of the
function f (h) and g(h), then

F{ f (h)g(h)}(ν) = F(ν) ∗ G(ν).
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In this context, f (x) = γ(h) (see Equation (8)) and F(ν) = Γ(ν) (see Equation (14)).
For g(x) = ∑∞

k=−∞ δ(x− k) (the Dirac comb of distance dx = 1) the Fourier transform is
again a Dirac comb of distance dν = 1/dx = 1. So, in the time domain is the same function
as in the frequency domain (for ν = x: G(ν) = g(x)). Using these results leads to

F
{

γ(h)
∞

∑
k=−∞

δ(x− k)

}
(ν) = Γ(ν) ∗

(
∞

∑
k=−∞

δ(ν− k)

)

=
∫ ∞

−∞
Γ(u)

(
∞

∑
k=−∞

δ(u− ν− k)

)
du

(i)
=

∞

∑
k=−∞

∫ ∞

−∞
Γ(u)δ(u− (ν + k))du︸ ︷︷ ︸

(ii)
=

∞

∑
k=−∞

Γ(ν + k)

(iii)
=

∞

∑
k=−∞

︷ ︸︸ ︷∫ ∞

−∞
γ(h)e−i2πνhe−i2πkhdh

=
p

∑
l=1

Al

∞

∑
k=−∞

∫ ∞

−∞
p|h|l e−i2πνhe−i2πkhdh.

In step (i) the sum and the integral are exchanged. Step (ii) represents the ability of the
Dirac impulse that

∫ ∞
−∞ f (u)δ(u− x)du = f (x). Finally, (iii) uses the frequency shift of the

inverse Fourier transform (see e.g., [16], p. 26, Table 2.2). Using this function to compute
the power spectral density for an AR(1) process will result in Equation (12) or in the case of
an AR(2) process with two complex conjugated zeros in Equation (13).
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