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Abstract: This work represents any distribution of data by an Intervals’ Number (IN), hence it
represents all-order data statistics, using a “small” number of L intervals. The INs considered are
induced from images of grapes that ripen. The objective is the accurate prediction of grape maturity.
Based on an established algebra of INs, an optimizable IN-regressor is proposed, implementable
on a neural architecture, toward predicting future INs from past INs. A recursive scheme tests the
capacity of the IN-regressor to learn the physical “law” that generates the non-stationary time-series
of INs. Computational experiments demonstrate comparatively the effectiveness of the proposed
techniques.

Keywords: agriculture 4.0; big data; computational intelligence; Intervals’ Number (IN); non-
stationary; prediction regressor model; time-series

1. Introduction

There is a long-term interest in extending the fourth industrial revolution (Industry
4.0) to agricultural production [1]. Regarding viticulture, in particular, the interest is in
minimizing the human presence in the vineyard during production. In the aforementioned
context, the accurate prediction of the grape maturity is critical in order to timely engage
both human labor and equipment for harvest. Newly introduced technologies from asso-
ciated areas such as the Internet of Things (IoT), Big Data, and Artificial Intelligence (AI)
can be combined with autonomous robotic systems in order to collect and interpret data,
monitor and evaluate crop status, and automatically plan effective and timely interventions.
An early in-field assessment of fruit maturity level and therefore an estimation on har-
vest time has the potential to enable sustainable farming by balancing between economy,
ecology, and optimal crop quality [2]. However, the development of autonomous robots
for agricultural applications faces the daunting scale of the data involved [3]. Our special
interest here is in the prediction of grapes maturity level, intended to be integrated into an
autonomous grape-harvester robot [4].

Fruit maturity can be studied as a time-series, where the sequence of maturity data,
m1, m2, . . . , mD is indexed in time. The objective is to predict future fruit’s maturity
level. A number of different models have been used including linear ones such as classic
autoregressive (AR), moving average (MA), autoregressive moving average (ARMA),
and autoregressive integrated moving average (ARIMA) models; however, those models
typically assume stationary time-series [5,6], and they may fail with non-stationary time-
series regarding maturity, unless a very high order linear model is used to gain an insight
into the system and its underlying laws. The latter needs extensive learning which calls
for long processing time as well as computational resources. Therefore, nonlinear models,
such as Neural Networks (NN), have been proposed to counter forecasting problems [7–9].
The most straightforward approach for an NN model to learn a time-series is to provide
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the samples in time to the input of the NN. However, if the time-series are complex, then
more past samples are needed; the latter usually results in a complex system of multiple
inputs and weights.

This paper uses Intervals’ Numbers (INs) for predicting the maturity of grapes based
on real-world measurements by a parametric IN-regressor model implementable by a
neural network architecture. Note that INs have originally been introduced, under the name
Fuzzy Intervals’ Numbers (FINs), in the context of fuzzy set theory [10]. The interpretation
of INs was later extended, in the context of the Lattice Computing (LC) information
processing paradigm [11]. In particular, an IN has been defined as a mathematical object
that can be interpreted either as a fuzzy interval or as a distribution of samples; the latter
interpretation implies that an IN can potentially represent all-order statistics [11]. The
mathematical properties of the set of INs have been studied for a long time. An algebra
of INs has been established [10,12,13]. INs have been employed in logic and reasoning
applications [14,15]. Furthermore, they have been employed in interpolation/extrapolation
applications [16].

INs have already been applied to time-series classification applications regarding
electroencephalography (EEG) signals [17]. Recently, INs have been employed toward
predicting the maturity of grapes [18]. This work is a follow-up of [18] with the following
novelties: first, additional computational experiments are carried out using (1) the previous
three and four INs to predict a future IN, (2) fewer data for training; second, a recursive
scheme here demonstrates an IN-regressor’s capacity to learn the physical “law” that
generates the non-stationary time-series of INs regarding grape maturity; third, the problem
of time-series forecasting in agriculture is described, in mathematical terms, as a non-
stationary time-series forecasting problem thus bringing INs to the foreground as an object
for time-series processing in other domains with the advantage that an IN represents a
distribution of data including all-order data statistics.

The layout of the paper is as follows: Section 2 presents two IN-regressor models for
prediction. Section 3 details experimental application results. Finally, Section 4 summarizes
our contribution, and it discusses potential future work extensions.

2. An IN-Regressor Parametric Models for Prediction

Figure 1 displays an IN in its two equivalent representations, namely the membership–
function–representation in Figure 1a and the interval–representation in Figure 1b. More
specifically, the membership–function–representation is identical to a probability distribu-
tion function; therefore, it is amenable to interpretations, whereas its equivalent interval-
representation lends itself to useful algebraic operations in the context of mathematical
lattice theory.
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The space of INs is known to be a cone in a linear space. Therefore, linear models such
as ARMA models can be developed. The work in [18] has proposed a nonlinear model
in the space of INs implemented by three-layer feed-forward neural network, namely
IN-based Neural Network or INNN for short, with N = 2 inputs. In this work, the number
of inputs of the INNN is increased to N as shown in Figure 2. More specifically, the input
to INNN is an N-tuple (Fk+1, . . . , Fk+N) of INs, where k ∈ {0, . . . , n − N} and n is the
total number of INs in a time-series F1, . . . , Fn. The INNN is trained to learn mapping
an N-tuple (Fk+1, . . . , Fk+N) to the true output IN Fk+N+1. In other words, the nonlinear
regressor model implemented by the INNN is trained to learn the physical “law” that
generates the non-stationary time-series of INs regarding grape maturity. More specifically,
a sliding window of size N INs is used at times k∈{0, . . . , n − N} to generate an N-tuple
(Fk+1, . . . , Fk+N) of INs. We point out that an IN in this work represents a grape image data
regarding the maturity of a grape bunch as described in [18].
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Figure 2. Given a time-series of n INs samples, an N × K× 1 forward neural network architecture,
which operates on INs, can implement the proposed IN-regressor. The output F̂k+N+1 at sampling
time k + N, where k ∈ {0, . . . , n − N}, is an estimate/prediction of the true IN Fk+N+1 at the next
sampling time.

The architecture in Figure 2 is trained to learn a difference equation that calculates
an estimate F̂k+N+1 of the true future IN Fk+N+1 based on N past INs Fk+1, . . . , Fk+N.
Learning involves the calculation of a set of parameters that minimize the error between the
estimate F̂k+N+1 and the true output IN Fk+N+1 induced from a training image. Algorithm 1
describes the training of the INNN based on a genetic algorithm (GA) [18]. In particular,
error minimization is pursued by a GA whose cost function is the metric distance between
the estimate F̂k+N+1 and the true output IN Fk+N+1. The population of chromosomes is
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a number of parameters including: (a) the set of weights of the neural network, (b) the
parameters of the activation function of each neuron and (c) the set of biases for all neurons.
In this case, the activation function is a sigmoid.

Algorithm 1. IN-Regressor Training by a Genetic Algorithm (GA)

1. Consider the training data set.
2. Generate an initial population of parameter sets.
3. for g generations do
4. Evaluate individuals using the distance between the IN-regressor computed output IN

(prediction) estimate and the true output IN.
5. Apply the genetic operators.
6. end for

In contrast to the INNN model presented in [18], which used only measured INs as
inputs, the IN-regressor model in this paper uses, in addition, previous predictions as
inputs to calculate predictions for future days. Figure 3 delineates the operation of the
recursive IN-regressor with N inputs. In other words, for the calculation of a maturity
prediction for a particular day, one or more of the input INs is actually a previous prediction.
In this manner, the recursive scheme in Figure 3 tests the capacity of the proposed IN-
regressor to learn the physical “law” that generates a time-series of INs regarding grape
maturity.
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Figure 3. Given a time-series of n INs samples, a recursive IN-regressor estimates/predicts IN
F̂k+N+1 at time k + N, where k ∈ {0, . . . , n − N}, based on past IN predictions such as F̂k+N etc.

In terms of Computational Intelligence, the proposed IN-regressor model can be
interpreted as a multilayer Fuzzy Inference System (FIS) for deep learning. In conclu-
sion, knowledge is induced from the data in the form of rules; furthermore, fuzzy lattice
reasoning (FLR) explanations of the IN-regressor answers can be given as demonstrated
below.

3. Experimental Results

Grape maturity at harvest time is based on the composition balance of several maturity-
related chemical compounds and sensory attributes such as color and taste [19]. In order to
exploit composition changes and decide on optimal harvest time, it is necessary to perform
sensory assessments, i.e., ripeness evaluation, optimally by using non-destructive methods.
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Toward this end, Red–Green–Blue (RGB) color imaging has been used to calculate the color
intensity distribution on grape images while ripening. More specifically, the green channel
histogram was represented by an IN [18].

This work extends the IN-regressor in [18] whose results are partly presented below
for comparison reasons. More specifically, in [18], only two inputs were used, i.e., N = 2 in
Figure 2; whereas, in this work, additional experiments were carried out using both N = 3
and N = 4 in order to study the robustness of the prediction when incrementally more past
data were used for prediction. Moreover, in [18], three different training modes were used,
namely (a) only One (the first) data sample, (b) Every Other data sample, and (c) nearly the
First Half the data samples; whereas, in this work, an additional training mode was used,
that is, (d) nearly the First Third of the data samples were also employed for training in
order to study the robustness of the prediction when incrementally more data were used to
train the IN-regressor. An IN-regressor was trained by the GA in Algorithm 1.

A trained IN-regressor was tested in two different modes, namely “forward” and
“recursive” using all the remaining (non-training) data. During “forward” testing, the
N-tuple of INs inputs to the IN-regressor included exclusively real (true) INs induced from
images, whereas, during “recursive” testing, the N-tuple of INs input to the IN-regressor
progressively included ever more of its previous IN predictions as shown in Figure 3. Both
“forward” and “recursive” testing were preceded by the same training.

Each different training/testing mode has a particular experimental value as explained
in the following. More specifically, One, First Third, and First Half modes use progressively
ever more training data; the Every Other mode indicates the effects of reducing the sam-
pling rate by 2, by sampling every other day. Finally, the recursive scheme, in particular,
demonstrates an IN-regressor’s capacity to learn the physical “law” that generates the
time-series of INs regarding grape maturity toward achieving long-term predictions. In the
experiments below, an interval-representation of an IN included L = 32 levels; moreover,
the time-series of n = 13 INs in [18] was used.

The results for N = 2 have been detailed in [18]. Tables 1–4 detail the results for N = 3.
Table 5 summarizes the results for all training/testing modes for all N = 2, N = 3, and N = 4.
Table 5 clearly demonstrates that, as N increases, the training error decreases as well as the
corresponding standard deviation due to more accurate predictions. A similar observation
holds for the testing error, for the same reason, even though the testing error is significantly
larger with significantly larger standard deviation. For constant N, as the number of
training data increases, so does the error, due to “curve-fitting” problems; nevertheless,
often the corresponding standard deviation appears to decrease. However, an IN-regressor
demonstrates a good capacity for generalization on the testing data because, for constant
N, as the number of training data increases, the error decreases even though it is clearly
larger than the corresponding training error. Especially promising is the performance of the
IN-regressor in the recursive mode for N = 4 when the First Half of the data were used for
training. Then, an average of 6.65 was recorded with a standard deviation of 2.32 recorded
compared to 4.30 and 0.96, respectively, recorded in the forward mode. The significance
of the latter is that the proposed IN-regressor could potentially make accurate long-term
predictions, thus providing time to engage both human labor and equipment for grape
harvest.
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Table 1. Training/Testing distance error Average and Standard Deviation using N = 3 inputs. The training set included only
one sample, i.e., a triplet of INs as input and one output.

Training Testing
Forward Recursive

Data Error Data Error Data Error

(F1, F2, F3)→ F4 0.20

(F2, F3, F4)→ F5 8.53
(

F2, F3, F̂4
)
→ F5 13.05

(F3, F4, F5)→ F6 10.68
(

F3, F̂4, F̂5
)
→ F6 14.97

(F4, F5, F6)→ F7 12.40
(

F̂4, F̂5, F̂6
)
→ F7 10.61

(F5, F6, F7)→ F8 9.66
(

F̂5, F̂6, F̂7
)
→ F8 12.02

(F6, F7, F8)→ F9 13.54
(

F̂6, F̂7, F̂8
)
→ F9 19.87

(F7, F8, F9)→ F10 15.41
(

F̂7, F̂8, F̂9
)
→ F10 27.01

(F8, F9, F10)→ F11 15.00
(

F̂8, F̂9, F̂10
)
→ F11 30.48

(F9, F10, F11)→ F12 2.60
(

F̂9, F̂10, F̂11
)
→ F12 19.27

(F10, F11, F12)→ F13 3.27
(

F̂10, F̂11, F̂12
)
→ F13 21.36

Average 0.20 10.12 18.74

Standard Deviation 0 4.68 6.82

Table 2. Training/Testing distance error Average and Standard Deviation using N = 3 inputs. Every Other data sample, i.e.,
a triplet of INs as input and one output, was used for training.

Training Testing
Forward Recursive

Data Error Data Error Data Error

(F1, F2, F3)→ F4 2.29

(F2, F3, F4)→ F5 4.84
(

F2, F3, F̂4
)
→ F5 5.76

(F3, F4, F5)→ F6 4.56

(F4, F5, F6)→ F7 4.67
(

F4, F5, F̂6
)
→ F7 6.22

(F5, F6, F7)→ F8 1.77

(F6, F7, F8)→ F9 3.53
(

F6, F7, F̂8
)
→ F9 23.36

(F7, F8, F9)→ F10 2.87

(F8, F9, F10)→ F11 5.26
(

F8, F9, F̂10
)
→ F11 10.02

(F9, F10, F11)→ F12 2.93

(F10, F11, F12)→ F13 5.30
(

F10, F11, F̂12
)
→ F13 3.19

Average 2.89 4.72 9.71

Standard Deviation 1.05 0.71 8.01
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Table 3. Training/Testing distance error Average and Standard Deviation using N = 3 inputs. The training set included
approximately the First Third of the total number of data samples.

Training Testing
Forward Recursive

Data Error Data Error Data Error

(F1, F2, F3)→ F4 2.69

(F2, F3, F4)→ F5 0.77

(F3, F4, F5)→ F6 3.62

(F4, F5, F6)→ F7 1.10

(F5, F6, F7)→ F8 4.23
(

F5, F6, F̂7
)
→ F8 8.12

(F6, F7, F8)→ F9 3.97
(

F6, F̂7, F̂8
)
→ F9 14.48

(F7, F8, F9)→ F10 5.74
(

F̂7, F̂8, F̂9
)
→ F10 20.75

(F8, F9, F10)→ F11 5.73
(

F̂8, F̂9, F̂10
)
→ F11 24.01

(F9, F10, F11)→ F12 6.37
(

F̂9, F̂10, F̂11
)
→ F12 22.20

(F10, F11, F12)→ F13 8.67
(

F̂10, F̂11, F̂12
)
→ F13 22.34

Average 2.05 5.78 18.65

Standard Deviation 1.34 1.69 6.12

Table 4. Training/Testing distance error Average and Standard Deviation using N = 3 inputs. The training set included
approximately the First Half of the total number of data samples.

Training Testing
Forward Recursive

Data Error Data Error Data Error

(F1, F2, F3)→ F4 3.15

(F2, F3, F4)→ F5 0.61

(F3, F4, F5)→ F6 4.71

(F4, F5, F6)→ F7 1.20

(F5, F6, F7)→ F8 1.59

(F6, F7, F8)→ F9 6.56
(

F6, F7, F̂8
)
→ F9 6.93

(F7, F8, F9)→ F10 7.07
(

F7, F̂8, F̂9
)
→ F10 10.15

(F8, F9, F10)→ F11 6.81
(

F̂8, F̂9, F̂10
)
→ F11 13.90

(F9, F10, F11)→ F12 8.12
(

F̂9, F̂10, F̂11
)
→ F12 11.09

(F10, F11, F12)→ F13 3.64
(

F̂10, F̂11, F̂12
)
→ F13 13.06

Average 2.25 6.44 11.03

Standard Deviation 1.66 1.67 2.73
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Table 5. Training/Testing distance error Average and Standard Deviation (Std) using N ∈ {2,3,4} inputs for four training
modes: (1) One sample, (2) Every Other sample, (3) First Third of the samples, and (4) First Half of the samples.

N Training Mode Training Error Testing Error (Average/Std)
(Average/Std) Forward Recursive

2 (1) One sample 0.10/0 11.45/9.17 37.87/9.96
(2) Every Other sample 3.21/1.26 10.54/8.74 17.85/11.93
(3) First Third of the samples 5.97/3.28 7.92/3.43 18.54/4.53
(4) First Half of the samples 5.15/3.79 6.84/4.12 7.57/4.87

3 (1) One sample 0.20/0 10.12/4.68 18.74/6.82
(2) Every Other sample 2.89/1.05 4.72/0.71 9.71/8.01
(3) First Third of the samples 2.05/1.34 5.78/1.69 18.65/6.12
(4) First Half of the samples 2.25/1.66 6.44/1.67 11.03/2.73

4 (1) One sample 0.14/0 14.09/3.68 20.21/8.92
(2) Every Other sample 1.95/0.48 4.99/1.95 9.64/4.66
(3) First Third of the samples 0.93/0.32 10.85/4.25 25.89/2.75
(4) First Half of the samples 1.64/0.99 4.30/0.96 6.65/2.32

An N-tuple of INs input to the IN-regressor followed by its corresponding output IN
can be interpreted as a fuzzy rule (i.e., knowledge), of a “Mamdani type” FIS, induced from
the training data as indicated in Figure 4, where Figure 4a shows the rule’s antecedent and
Figure 4b shows the rule’s consequent.
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Figure 4. The first three INs (a) the first three INs F1, F2 and F3, from top to bottom, of the considered time-series of Ins;
(b) estimated out IN F̂4 (shown in solid intervals) computed in the first line of Table 4 versus the real (true) output IN F4

(shown in dashed intervals).

4. Discussion and Conclusions

Agriculture 4.0 [1], including viticulture, calls for intelligent decision-making. Of
special interest is the accurate prediction of the grape maturity in order to timely engage
both human labor and equipment for harvest. This work has proposed a parametric
regressor, namely IN-regressor, model for grape maturity prediction.

The IN-regressor processes Intervals’ Numbers (INs) with the advantage that an
IN represents a distribution of data including all-order data statistics. Hence, instead of
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representing the maturity status of grapes by few numbers, e.g., the mean and standard
deviation of a number of measurements, the maturity status of grapes is represented by a
distribution of measurements, i.e., all-order data statistics, toward better decision-making.
A neural network architecture, namely INNN, with N inputs (INs) and one output (IN)
was shown to implement the proposed IN-regressor.

Extensive computational experiment here has demonstrated that an IN-regressor
can accurately predict the grape maturity status, especially for larger N as well for more
training data. Therefore, the IN-regressor be used for predicting the grape harvest time.
Furthermore, especially promising is a recursive IN-regressor scheme for long-term predic-
tion.

The proposed IN-regressor has been interpreted as a deep learning FIS with a capacity
to suggest explanations for its answers by “Mamdani type” fuzzy rules.

Technical future work will pursue one (or more) neural network layer(s) in the input
as a filter that normalizes the effects of taken a grape image at different azimuth /altitude
/distance /lighting conditions, etc. Furthermore, a faster algorithm for optimization will
be pursued instead of a GA. An extension of this work can also demonstrate far more
experimental results using data already acquired on-the-field.

As grapes mature, their image statistics change with time. Therefore, since an IN
represents a distribution of image statistics regarding grape maturity, it follows that a
time-series of INs by definition represents a non-stationary time-series process. Hence, the
proposed IN-regressor can be used for predicting a future probability distribution function
from past probability distribution functions in a non-stationary time-series. Therefore,
apart from agriculture, this work has presented potentially useful instruments for other
application domains including the environment [20], medicine [21], econometrics [22],
stock-market data [23], and other.
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