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Abstract: MEMS capacitive pressure sensors have proven to be more reliable in terms of temperature
drift and long-term stability when compared to MEMS piezoresistive pressure sensors. In this study, a
MEMS capacitive pressure sensor using micromachined technology has been designed and fabricated.
As the movable electrode, a silicon membrane is used, while the fixed electrode is a gold metal film
on a glass substrate. There is no deformation of the silicon membrane when the pressure is equal on
both sides. As a result of the pressure of 0 kPa applied to the silicon membrane, a capacitance exists
between it and the metal electrode. Differences in pressure on both sides of the silicon membrane
will cause the membrane to deform. Silicon membranes deform due to pressure differences, which
affect the capacitance between metal electrodes and silicon membranes. MEMS capacitive pressure
sensors benefit from the superior mechanical properties of silicon material compared to metal-based
sensors. Capacitive MEMS sensors are more desirable for applications requiring high performance
and stability as compared to metal pressure sensors. This device is suited to measuring blood
pressure with a measurement range of 0–45 kPa. When applied pressure was 0 kPa, the measurement
capacitance was 3.61 pF, and when 45 kPa was applied, it was 7.19 pF.

Keywords: silicon membranes; MEMS; pressure sensor; capacitive sensor

1. Introduction

There are two electrodes in a MEMS capacitive pressure sensor, one of which is
movable and one of which is fixed. A silicon membrane is used to make a movable
electrode, and a metal film is used to make a fixed electrode. To create silicon membrane
structures, silicon micromachining processes are used. As pressure is applied to a silicon
membrane structure, the structure is deformed to determine the outside pressure. In terms
of mechanical properties, silicone materials are excellent, as they have high yield strength,
no plastic delay, and mechanical hysteresis characteristics. As a result of silicon’s superior
mechanical properties, MEMS capacitive pressure sensors perform far better than metal
sensors. MEMS capacitive pressure sensors are better suited to high-performance and
high-stability applications than metal pressure sensors.

MEMS capacitive pressure sensors have a higher level of performance when compared
with MEMS piezoresistive pressure sensors, particularly in terms of temperature drift,
long-term stability, and others. MEMS piezoelectric capacitive sensors for underwater
applications have been reported [1,2]. MEMS capacitive pressure sensors are developed
and produced by many companies and research centers. A MEMS capacitive pressure
sensor serves as the core-sensitive component of the sensors used by the VTI barometric
pressure sensor and altimeter, as well as the Fuji gauge pressure sensor [3,4]. A high-
sensitivity MEMS pressure sensor chip for different ranges (1 to 60 kPa) utilizing the
novel electrical circuit of a piezo-sensitive differential amplifier with a negative feedback
loop (PDA-NFL) is developed. This sensor has a sensitivity of 44.9 mV/kPa/V and a
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nonlinearity error of 0.26 (for 0.5 kPa). It has a zero-pressure output signal (offset) of
14 mV [5]. The experimental results of the pressure sensor showed that a sensitivity of
4.72 mV/kPa/V and a non-linearity error of 0.18% FSO at 20 ◦C were achieved in the
pressure range of 0–3 kPa. It has a zero-point offset voltage of 5.78 mV [6]. In accordance
with the FEM results, the experimental results showed that the fabricated pressure sensors
using bossed diaphragms combined with side edge and diagonal directional positioned
peninsula islands had sensitivities of 0.065 mV/V/Pa and 0.060 mV/V/Pa, respectively,
and nonlinearity errors of 0.33% FS and 0.30% FS, respectively, within the pressure range of
0–500 Pa [7].

In this paper, a silicon-glass capacitive pressure sensor is described. MEMS micro-
machining was used to fabricate the silicon membrane, and silicon-glass anodic bonding
enabled sensitive devices to be achieved. Silicon membranes are used as movable electrodes,
while gold metal films on glass substrates are used as fixed electrodes.

2. Fabrication Process

In Figure 1, MEMS capacitive pressure sensors are shown in their structure and work-
ing principle. Several materials are used in the design of MEMS capacitive pressure sensors,
including silicon membranes as movable electrodes, gold metal films as fixed electrodes,
and glass substrates as support. The fixed electrode needs to maintain a consistent electrical
connection for accurate capacitance measurements. Therefore, gold is an excellent electric-
ity conductor, essential for creating a reliable capacitive sensing element. Gold exhibits low
contact resistance, forming good electrical connections with other materials and surfaces.
This is crucial for minimizing signal loss and maintaining accurate measurements. In our
current work, MEMS (Micro-Electro-Mechanical Systems) capacitive pressure sensors with
absolute pressure are used as sensing mechanisms. The sensors measure the pressure by
detecting the change in capacitance between two conductive plates or electrodes because
of the applied pressure. When pressure is applied, the distance between the plates changes,
causing a variation in the capacitance, which can then be converted into an electrical signal
proportional to the applied pressure. There is a pressure difference between the two sides
of the silicon membrane, and the capacitance between the silicon membrane and the metal
electrode is the result of this pressure difference between the two sides [8,9].
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Figure 1. Mechanism of MEMS capacitive pressure sensors. (a) When there is no pressure.
(b) Deformation of the silicon membrane in response to pressure.

Figure 2 shows the fabrication process of the MEMS capacitive pressure sensor. The process
consists of two parts. The silicon substrate process is one part of the process. To fabricate the
silicon membrane, silicon etching techniques were used. Another part is the glass substrate
process. To achieve a fixed metal electrode, metallization and patterning techniques were
used. The silicon and glass wafers were bonded using silicon-glass anodic bonding technology.
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Anodic bonding has been the most widely used bonding method for MEMS because it is
easy, reliable, and highly yielding. In principle, anodic bonding can be performed between
electron-conductive materials and ion-conductive materials. The most typical combination is Si
and borosilicate glass, which shows ion conductivity at 300 ◦C or higher. Other semiconductors
and metals except Ag can also be anodically bonded with glass, but different kinds of glass
for Si must be used to match the coefficient of thermal expansion. The merit, which is not
found in other bonding methods, is that an electrostatic attractive force of about 20 kgf/cm2

works between wafers, and thus bonding uniformity, i.e., yield, is excellent without special cares
such as uniform loading. In addition, the reliability of bonding strength and hermeticity have
been proven in a long history of MEMS applications [10]. Typical bond strength is between
10 and 20 MPa according to pull tests, which is higher than the fracture strength of glass [11].
Chips were separated, and sensor dies were created through dicing. The developed MEMS
capacitive pressure sensor chip is shown in Figure 2.
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Figure 2. Process for fabricating MEMS capacitive pressure sensors. (a) Sillicon and Glas subtrate.
(b) Silicon membrane and deposition of molybdeum as an electrode on glass subtrate. (c) Cutting
and bonding of MEMS pressure sensor.

3. Results and Discussion

Gas pressure was applied using a GE Sensing PACE5000 precision pressure controller.
This pressure measurement range is suitable to measure blood pressure from 0 to 45 kPa.
A pressure of 0 kPa resulted in a measurement capacitance of 3.61 pF, while a pressure
of 45 kPa resulted in a measurement capacitance of 7.19 pF. Figure 3 shows the results of
the capacitance-pressure curve and elastance-pressure curve measurements. As expected,
with the increase in pressure, the capacitance of the silicon membrane increases while the
elastance decreases.

Figure 3. Measurement curves for capacitive pressure sensors using MEMS technology. (a) Graph of
capacitance vs. pressure. (b) Graph of elastance vs. pressure.
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4. Conclusions

This work represents the design and fabrication of a MEMS capacitive pressure sensor.
Anodic bonding of silicon glass was used to fabricate the sensor using micromachined
technology. A silicon membrane is used as a movable electrode, and a gold metal film
on a glass substrate is used as a fixed electrode. With an applied pressure of 0 kPa, the
measurement capacitance is 3.61 pF, and with a full operating range of 45 kPa, it is 7.19 pF.
Capacitance increases with the increase in pressure, while elastance decreases. This type of
measurement is suitable for the application of blood pressure measurements because the
operating pressure ranges from 0 kPa to 45 kPa.
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