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Abstract: The detection of ammonia is very crucial for the welfare of modern society because of its
hazardous effect on the environment and human beings. High response time is one of the serious
concerns of most of the ammonia detectors reported so far in the literature. This issue has been
comprehensively addressed in the present investigation. Herein, the solvothermally synthesized
Cu-BTC was combined with the 5 wt%, 10 wt% and 20 wt% of partially reduced graphene oxide (rGO).
The structural, spectroscopic, morphological and electrical studies of as-synthesized CuBTC@rGO-
5wt%, CuBTC@rGO-10wt% and CuBTC@rGO-20wt% were done by X-ray diffraction (XRD), Fourier
transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy, and current-
voltage (I-V) characterization. The chemiresistive sensor based on Cu-BTC@rGO was developed on a
copper-coated glass electrode via the shadow mask technique. It shows excellent sensing properties
for CuBTC@rGO-10wt% in a range of 10 ppm to 80 ppm with a high stability of up to 30 days, good
linearity, and excellent response/recovery time, i.e., 84 s and 125 s, respectively. The limit of detection
has been established as 10 ppm, which is below the maximum residue limit established by the OSHA
(Occupational Safety and Health Administration).
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1. Introduction

Increasing demand for various industrial processes and the technological and agri-
cultural development of nations across the globe contributes significantly to the emission
of various hazardous pollutants such as ammonia, sulfur dioxide, carbon dioxide, carbon
monoxide, etc. Among these gases, ammonia is the most frequently used and produced
in many industrial processes [1,2]. According to the Occupational Safety and Health Ad-
ministration (OSHA), exposure beyond 50 ppm of NH3 damages the human respiratory
system and causes throat, nose, and eye irritation to the most sensitive individual [3,4].
Hence, early detection of ammonia below its maximum residue limit (50 ppm) is the great
importance for the monitoring working/living environment for ensuring occupant safety.
Many researchers have explored carbon-based materials, such as graphene, carbon nan-
otube, graphene oxide, etc., for ammonia sensing because of their conducting properties
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and relative ease of use in device fabrication. Although sensors based on these materials
exhibit excellent sensitivity, they need to be functionalized to reduce cross-selectivity.

The past decade has witnessed the metal organic framework (MOF) as an extensively
used sensing layer because of its extraordinary properties like high surface area, porosity,
and chemical activity. Among the MOFs, Cu-BTC is particularly attractive because of its
structural building blocks and ability to coordinative unsaturation on the metal center [5].
Until today, MOFs have been mostly explored for gas sensing using various modalities like
quartz crystal microbalance (QCM) [6], luminescence [7], work function [8], etc. However,
these modalities consume high power and require complex analysis techniques. On the
other hand, chemiresistive sensors offer advantages like simple analysis, cost effectiveness,
and low power consumption. Chemiresistive sensors are the most widely applied semi-
conductive device because of their inherent simplicity.

Despite the advantageous properties of MOF, there are some issues which impose
limitations on their use in chemiresistive gas sensing because of their poor electrical con-
ductivity. To address this issue, we have synthesized a composite of copper-based MOF
(Cu-BTC) and reduced graphene oxide (rGO) and tested it for chemiresistive ammonia
sensing. The chemiresistive sensor based on Cu-BTC@rGO shows a high stability of up to
30 days, good linearity, and excellent response/recovery time, i.e., 84 s/125 s, respectively.

2. Experimental Methods
2.1. Materials and Methods

Sodium nitrate, graphite flakes, hydrogen peroxide (H2O2), sulfuric acid (H2SO4), and
hydrochloric acid (HCl) were procured from Moly-chem, Mumbai, India. Then, 1,4-benzene
dicarboxylate, N, N-dimethylformamide (DMF), copper nitrate trihydrate and potassium
per magnet were purchased from Sigma Aldrich (Darmstadt, Germany).

2.2. Synthesis of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)

Graphene oxide was prepared by the oxidation of graphite using the hummers
method [9] and its reduction was completed by treating with synthesized GO at 300 ◦C
for 10 min.

2.3. Synthesis of Cu-BTC and Cu-BTC@rGO

Cu-BTC was synthesized with the hydrothermal method, as reported elsewhere [10].
Briefly, 2.252 g of copper nitrate trihydrate and 0.982 g of trimesic acid were added in 50 mL
of DI and DMF, respectively. Both solutions were then mixed and stirred for 15 min. The
resultant solution was then shifted to a glass flask (150 mL) and kept in oil bath and heated
for 4 h (105 ◦C). The obtained material was filtered and dried at room temperature.

Cu-BTC@rGO composite was synthesized with a similar method by adding 5 wt%,
10 wt% and 20 wt% of partially reduced graphene oxide at the time of solution preparation.

3. Results and Discussion
3.1. X-ray Diffraction (XRD)

The structural information of GO, rGO, Cu-BTC, and Cu-BTC@rGO was obtained by
using the powder X-ray diffraction technique (D8 Advance Bruker, Germany) and depicted
in Figure 1a. The peaks at 2θ = 11.9◦ and 45◦ represent the (0 0 1) and (1 0 0) plane in the
graphene oxide, respectively.
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Figure 1. (a) XRD pattern of GO, rGO, Cu-BTC, Cu-BTC@rGO5wt%, Cu-BTC@rGO10wt%, and Cu-
BTC@rGO20wt% (b) FTIR Spectra of GO, rGO, Cu-BTC, Cu-BTC@rGO5wt%, Cu-BTC@rGO10wt%, 
and Cu-BTC@rGO20wt%. 
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23.4°, 24.1°, 26°, 27.7°, 28.7°, and 35.7° represent the (200), (220), (222), (331), (420), (422), 
(333), (440), (442), (620), (444), (551), (553), (733), (660), and (951) dhkl planes [10]. Cu-
BTC@rGO shows the same peaks as Cu-BTC but little distortion between 2Ɵ = 20° to 30° 
indicates the presence of rGO. 

3.2. Fourier Transform Infrared Spectroscopy 
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of C=C, C=O and O-H, respectively. The peaks at 1220 cm−1 and 1048 cm−1 correspond to 
the stretching vibrations of the epoxy and alkoxy group [12]. After reduction, the peak at 
3310 cm−1 and 1048 cm−1 completely vanishes, which confirms the successful elimination 
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stretching vibration of Cu-O bond. The peak at 1442−1 and 1649−1 validates the presence 
of C=O and C-O stretching vibration. Moreover, the presence of the asymmetric stretch-
ing vibration of the carboxylic and C-H group can be confirmed by the presence of the 
peaks at 1460−1 and 2890 cm−1 [13]. The absorption peaks of Cu-BTC@rGO exactly match-
es with the Cu-BTC, which confirms that the presence of rGO does not prevent the link-
age between metal ion and ligand. As we increased the rGO concentration, the intensity 
of all peaks seemed to decrease as the crystallinity decreased. 

3.3. Atomic Force Microscopy 
The AFM images of Cu-BTC and Cu-BTC@rGO10wt% were recorded using a Park 
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Figure 1. (a) XRD pattern of GO, rGO, Cu-BTC, Cu-BTC@rGO5wt%, Cu-BTC@rGO10wt%, and Cu-
BTC@rGO20wt% (b) FTIR Spectra of GO, rGO, Cu-BTC, Cu-BTC@rGO5wt%, Cu-BTC@rGO10wt%,
and Cu-BTC@rGO20wt%.

After reduction, the peak at 2θ = 11.9◦ reduces significantly and new hump appears
between 2θ = 20◦ to 30◦ which is due to the exfoliation of graphene sheets, which confirms
the successful reduction of GO [11]. The XRD pattern of Cu-BTC shows the strong diffrac-
tion peaks at the 2θ angles 6.7◦, 9.5◦, 11.6◦, 14.7◦, 15◦, 16.5◦, 17.5◦, 19◦, 20.2◦, 21.3◦, 23.4◦,
24.1◦, 26◦, 27.7◦, 28.7◦, and 35.7◦ represent the (200), (220), (222), (331), (420), (422), (333),
(440), (442), (620), (444), (551), (553), (733), (660), and (951) dhkl planes [10]. Cu-BTC@rGO
shows the same peaks as Cu-BTC but little distortion between 2θ = 20◦ to 30◦ indicates the
presence of rGO.

3.2. Fourier Transform Infrared Spectroscopy

The coordination of metal ions with catechol unit was studied using FTIR spectroscopy
in the ATR mode by means of the FTIR (Bruker Alpha) and FTIR spectra of GO, rGO, Cu-
BTC, and Cu-BTC@rGO is depicted in Figure 1b. GO shows absorption peaks at 1622 cm−1,
1722 cm−1, and 3310 cm−1, which are attributed to the stretching vibrations of C=C, C=O
and O-H, respectively. The peaks at 1220 cm−1 and 1048 cm−1 correspond to the stretching
vibrations of the epoxy and alkoxy group [12]. After reduction, the peak at 3310 cm−1 and
1048 cm−1 completely vanishes, which confirms the successful elimination of the O-H and
epoxy groups, respectively. The peak at 730 cm−1 is attributed to the stretching vibration
of Cu-O bond. The peak at 1442−1 and 1649−1 validates the presence of C=O and C-O
stretching vibration. Moreover, the presence of the asymmetric stretching vibration of the
carboxylic and C-H group can be confirmed by the presence of the peaks at 1460−1 and
2890 cm−1 [13]. The absorption peaks of Cu-BTC@rGO exactly matches with the Cu-BTC,
which confirms that the presence of rGO does not prevent the linkage between metal ion
and ligand. As we increased the rGO concentration, the intensity of all peaks seemed to
decrease as the crystallinity decreased.

3.3. Atomic Force Microscopy

The AFM images of Cu-BTC and Cu-BTC@rGO10wt% were recorded using a Park
X7 system (park systems, Suwon, Republic of Korea) to evaluate the surface roughness of
the sensing film as shown in Figure 2a,b. The result reveals that the surface area/average
roughness values increased from 12.36 µm2/0.7 µm to 17.9 µm2/1.08 µm, respectively after
the incorporation of rGO in the Cu-BTC, which is favorable for the gas sensing.
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tween two electrodes. Real time chemiresistive sensing performance was studied on an 
indigenously fabricated dynamic gas sensing system. The results show that the Cu-
BTC@rGO5wt% and Cu-BTC@rGO20wt% do not show any sensing response because 
their electrical conductivity was not suitable for the sensing performance. Whereas Cu-
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istration (OSHA), with good response and recovery time, i.e., 84 s/125 s, respectively. 

Figure 2. AFM images of (a) Cu-BTC, (b) Cu-BTC@rGO10wt%.

4. Sensing Performance

The current–voltage characteristics of synthesized materials were studied using Keith-
ley 4200A (Keithley, Solon, OH, USA) in the potential range of −5 V to 5 V at room
temperature and shown in Figure 3a. With the increasing of the rGO concentration, the
conductivity of the Ce-BTC@rGO increased significantly. The chemiresistive sensor based
on the Cu-BTC@rGO composite was fabricated on copper-coated glass substrate.
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The gaps between the electrodes were prepared by simply cutting copper coated sub-
strate using diamond cutter and Cu-BTC@rGO was drop cast to bridge the gap between two
electrodes. Real time chemiresistive sensing performance was studied on an indigenously
fabricated dynamic gas sensing system. The results show that the Cu-BTC@rGO5wt% and
Cu-BTC@rGO20wt% do not show any sensing response because their electrical conductiv-
ity was not suitable for the sensing performance. Whereas Cu-BTC@rGO10wt% selectively
detected ammonia (NH3) (Figure 3b) up to 10 ppm, which is below maximum residue limit
suggested by Occupational Safety and Health Administration (OSHA), with good response
and recovery time, i.e., 84 s/125 s, respectively. Figure 3c confirms that as fabricated sensor
shows good linear dependency between NH3 concentration and sensor response. To depict
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the stability of the chemiresistive sensor-based Cu-BTC@rGO composite, we have repeated
the sensing measurement at 30 ppm after every 5 days of interval and results (Figure 3d)
shows that the sensor has excellent stability up to 30 days.

5. Conclusions

In summary, we have for the first time developed high performance room temperature
chemiresistive sensor using Cu-BTC@rGO nanocomposite for detection of NH3. Structural,
spectroscopic, and morphological studies were done using XRD, FTIR, and AFM to confirm
the successful synthesis of nanocomposite. The sensor was prepared on a copper-coated
glass electrode using the drop casting method. The sensor shows good linearity, and a
good response/recovery time, i.e., 84 s/125 s, with an excellent stability of up to 30 days
below the maximum residue limit suggested by OSHA.
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