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Abstract: DC motors are widely used in industries to provide mechanical power in speed and torque.
The position and speed control of DC motors is receiving interest from the scientific community in
robotics, especially in robotic arms, a flexible joint manipulator. The current research work is based on
the position control of DC motors using experimental investigations in LabVIEW. The linear control
strategy is applied to track the position and speed of the DC motor with comparative analysis in the
LabVIEW platform and simulation analysis in MATLAB. The tracking error in the hardware setup
based on LabVIEW programming is slightly greater than the simulation analysis in MATLAB due to
the inertial load of the motor during steady-state conditions. The controller output shows the input
voltage applied to the DC motor varies between 0 and 8 V to ensure minimal steady error while
tracking the position and speed of the DC motor.

Keywords: DC motor; LabVIEW; proportional integral derivative control; position tracking

1. Introduction

In the current technological era, the design and development of high-performance
motor drives is increasing exponentially due to their applications in electric trains, robotics,
DC appliances, biomedical equipment and other industrial applications. Generally, the
high-performance motor drive system is based on proficient speed command tracking and
a load regulating system to perform any task in industry [1–3]. DC drives are normally
less expensive and provide excellent control of speed for acceleration and deceleration
compared to AC motors. The most common emerging applications of DC motors are
robotic and electrical equipment. Therefore, the speed and position control of DC motors
has been investigated in the last few decades. One challenging aspect of the DC motor when
designing a control system is the uncertain and nonlinear characteristic which degrades
the performance of controllers [4,5]. In addition to industrial applications, DC motors are
extensively used in various serve devices like flight simulators, optoelectronic tracking
platforms and missile electromechanical actuators. However, various uncertainties exist
in motor serve systems including modeling errors, torque disturbances and parametric
perturbations hindering its performance and efficacy [6–8]. The disturbance torques can
be quite large for cheap DC motors and can cause performance issues. The conventional
proportional integral derivative (PID) controller may not be very effective for eliminating
the speed ripples of motors with small inertia due to the periodic nature of the disturbance
torque [9–13].

The robust control method based on the disturbance observer shows a strong inhibitory
effect against various external disturbances and parametric variations by improving the
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control performance of the system. The high-precision serve system relies on such ro-
bust control strategies. The sliding mode control variable structure control (SMVSC) is
a nonlinear control strategy exhibiting strong robustness against external disturbances
and parametric variations [14–20]. Besides this, the global sliding mode control reflects
the system trajectory on the sliding surface by constructing nonlinear switching function
and later eliminates the initial reaching function [21–23]. The current research is based on
the position and speed control of the DC motor for undergraduate students to investigate
and compare the performance of DC motors using hardware setups based on LabVIEW
programming and simulation analysis in MATLAB. The mathematical model of the DC
motor is derived using physics and electromagnetism laws. The PID controller is designed
to track the position of the DC motor. The performance of the PID controller is investigated
while tracking the position and speed during steady-state conditions. It is observed that
when using hardware based on experimental setup, the tracking error is slightly greater
compared to the simulation analysis in MATLAB due to the inertial load of the DC mo-
tor during the switching phase of the pulse generator signal. The controller gains and
specification of the input reference signal are the same for both analyses. The rest of the
paper is organized as follows: Section 2 describes the mathematical model DC motor;
Section 3 works on the control scheme design using a PID controller; Section 4 discusses
the simulation results in MATLB and the hardware implementation results in LabVIEW;
Section 5 provides the conclusions.

2. Mathematical Model of DC Motor

The DC motor is an electromechanical device that provides displacement at the output
side for various voltage levels at the input. The mathematical model of an armature-
controlled DC motor was derived by Mablekos in 1980. Figure 1 shows the permanent
magnets that generate the magnetic field referred to as the fixed field. The armature
is a rotating part through the current; iA(t) is the flow, and the experienced force at
90◦ can be stated as F = ILBsin θ for θ = 90◦, F = ILB, while L is the length of the
conductor, and B is the magnetic field strength. The resulting torque occurs due to the
force experienced by the armature, which causes the armature to rotate. The eindcued = vBL,
v is the velocity of the conductor, eindcued is the induced voltage that is proportional to the
angular speed of the armature in the magnetic field. The induced voltage can be stated as
Vb = Kb

dθm(t)
dt = Kbsθm(s). Applying KVL to the closed-loop circuit is shown in Figure 1 as

E(t) = ia(t)Ra + La
dia

dt
+ Vb(t) (1)
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Applying the Laplace transform to Equation (1) as in Equation (2),

E(s) = Ia(s)(Ra + LasIa(s) + Vb(s) (2)

Putting the value of Vb = Kb
dθm(t)

dt = Kbsθm(s) in Equation (2) as in Equation (3),

E(s) = Ia(s)(Ra + Las) + Kbsθm(s) (3)
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The torque Tm(s) developed by the motor is proportional to the armature current
Ia(s), which can be expressed as Tm(s) = Kt Ia(s) or Ia(s) =

Tm(s)
Kt

. Then, the value of Ia(s)
is put in Equation (3) as in Equation (4):

E(s) =
Tm(s)

Kt
(Ra + Las) + Kbsθm(s) (4)

Expressing the torque in terms of θm(s), Jm is the moment of inertia of the armature
Ja and load inertia for Jload for the QENT DC motor Jm = Ja + Jload. This can be ex-
pressed as Tm(s) = (Jms2 + Dms)θm(s) and its value is incorporated into Equation (4) as in
Equation (5):

E(s) =
(Jms2 + Dms)θm(s)

Kt
(Ra + Las) + Kbsθm(s) (5)

Assuming that the armature Ra >> La as La can be neglected in Equation (5) as in
Equation (6),

E(s) =
(Jms2 + Dms)θm(s)

Kt
×Ra + Kbsθm(s) (6)

Simplifying Equation (6) as in Equation (7),

θm(s)
E(s)

=
Kt/Ra

s(Jms + KtKb
Ra

)
(7)

The physical parameters of DC motor is shown in Table 1 with their description and
unit values.

Table 1. Physical parameter of the DC motor.

Parameter Name Description Unit

Ra Terminal resistance 8.4 Ω

Kt Torque constant 0.042 Nm/A

Kb Motor back-emf constant 0.042 V/(rad/s)

Jm Rotor inertia 4.0 × 10−6 kg m2

Jl Load inertia 0.6 × 10−6 kg m2

Lm Rotor inductance 1.16 mH

ml Estimated damping of the pivot 0.016 kg

md Disk mass 0.053 kg

3. PID Controller Design for Position Tracking of DC Motor

Figure 2 shows the cascaded control strategy based on a PID system to reflect the θm
to θre f in a closed-loop scheme.
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The controller input based on a PID controller can be defined as in Equation (8) [24,25].

E(s) = kp(θre f − θm(t)) + ki

∫
(θre f − θm(t))dt + kv

d
dt
(θre f − θm(t)) (8)
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Simplifying and taking the Laplace transform L of Equation (8) as in Equation (9),

E(s) = kpθre f (s)− kpθm(s) +
ki
s

θre f (s)−
ki
s

θm(s)− kvsθm(s) (9)

By substituting the value of E(s) as the input to the plant from Equation (9) in
Equation (10),

θm(s)
1086.96

(
s2 + 45.65s

)
=kpθre f (s)− kpθm(s) +

ki
s

θre f (s)−
ki
s

θm(s)− kvsθm(s) (10)

Simplifying and rearranging Equation (10) as in Equation (11),

θm(s)
θre f

=
1086.96(kps + ki)

s3 + s2(45.65 + 1086.96kv) + 1086.96kps + 1086.96ki
(11)

The third-order characteristic polynomial equation can be defined as in Equation (12).

(s2 + 2ζωns + ω2
n)(s + po) = s3 + (2ζωn+po)s

2 + (ω2
n + 2ζωn po)s + ω2

n po (12)

Then, compare the denominator of Equations (11) and (12) to compute the kp, ki
and kv gains of the PID controller for ζ = 1 and ωn = 30 rad/ sec and po = 1 as
0.883 A

deg , 0.0132 deg
s and 0.827 A

deg
s

, respectively.

4. Simulations and Experimental Hardware Results in MATLAB and LabVIEW

The investigated results achieved based on the simulation results in MATLAB and
the experimental analysis using LabVIEW are identified in Section 4. Figure 3a shows the
position control of the DC motor based on a PID controller while using the gains values
kp, kv and ki shown in Equation (12). The actual position θm(s) accurately tracks the θre f
with a tracking error of less than 5% in the MATLAB simulations. The input to the DC
motor is shown in Figure 3b as the input voltage level E(s) that varies from −4 V to 4 V.
Figure 3a,b shows that, as the position of the DC motor is varies, the input voltage level
also varies between two peaks. The Figure 3a shows that tracking error is quite negligible
using MATLAB simulation based on PID controller.
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Figure 3. (a) Position control of the DC motor in MATLAB; (b) controller input voltage level.

Figure 4a shows the position control of the DC motor based on the hardware platform
using LabVIEW. The θm(s) shows the measured position of the DC motor tracking the
θre f with a significant steady-state error due to the inertial load of the motor during the
switching of the pulse generator signal as a reference position level. Figure 4b shows that
the controller output E(s) is voltage applied as the input to the DC motor. The controller
output E(s) varies from −4 V to 4 V as the position of the DC motor changes.
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Figure 4. (a) Position control of the DC motor with the experimental setup using LabVIEW;
(b) controller output voltage as the input to the DC motor.

Figure 5a shows the speed control of the DC motor based on a PID controller. The ωm
is the actual speed of the DC motor as it tracks the ωre f with minor deviations in tracking
error during the switching of the square wave or pulse generator signal. Figure 5b shows
the input voltage level being provided to the DC motor as the controller output signal. The
amplitude of the input voltage E(s) to the DC motor has a variation of (0− 8) V.
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