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Abstract: Aiming at the impact of machine failure on scheduling schemes in actual production, this
paper proposes a multi-fidelity optimization approach considering the preventive maintenance of
the machine (MOAPMM). The genetic algorithm (GA) is used as a low-fidelity model to generate a
number of feasible solutions; the feasible solutions are sorted, grouped, and selected as high-quality
solutions according to the EOCBA method; the high-fidelity model considering machine preventive
maintenance (PM) is constructed by using the FlexSim@ software; and the high-quality solutions are
simulated to obtain the optimal scheduling scheme. Experimental results show that our proposed
method outperforms approaches that do not consider machine PM in terms of completion time for
the flexible job shop scheduling problem with machine failure.
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1. Introduction

Job shop scheduling is a critical component of machine scheduling. Classical methods
like mathematical programming and branch bounding [1] face limitations in computational
efficiency as the problem size increases. Swarm intelligence algorithms offer a popular ap-
proach to solving job shop scheduling problems by obtaining near-optimal solutions within
a limited time frame. For example, Ali et al. [2] designed a GA based on a virtual crossover
operator for the dynamic event of the random arrival of jobs, showing an improved average
completion time. Demir et al. [3] combined the ant colony algorithm with GA to minimize
the lead time and delay time of each job. In actual production, disturbance events such as
machine failures and emergency jobs often render the original optimal solution infeasible.
With the development of computer technology, simulation-based scheduling methods have
been widely used. Discrete event simulation accurately represents workshop elements by
creating a model close to reality. However, it is obviously too time-consuming to simulate
all the scheduling schemes, and Xu et al. [4] proposed a multi-fidelity model based on ordi-
nal transformation and optimal sampling (MO2TOS), which quickly screens high-quality
solutions in low-fidelity models, samples from high-quality solutions for high-fidelity
simulation, and selects the optimal solution based on the high-fidelity simulation results
to reduce the computation time under the premise of guaranteeing the solution quality.
Currently, there are fewer studies on high-fidelity optimization methods considering distur-
bance events. In this paper, we propose MOAPMM for solving flexible job shop scheduling
considering machine failure.

2. Problem Description

The flexible job shop scheduling problem studied in this paper can be described as follows:
there are n jobs J = {J1, J2, . . . , Ji, . . . , Jn } and m machines M = {M1, M2, . . . , Mk, . . . , Mm }
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in the workshop, each of job has ni operations Ji =
{

Oi1, Oi2, . . . Oini }; each operation has
its corresponding set of optional machines and is processed at different times on different
machines. Consider the production reality that machines require flexible PM, i.e., the
cumulative running time of the machine cannot exceed the machine maintenance threshold
um; otherwise, the machine fails, and the time of post-failure maintenance (FM) is much
larger than the PM time. The goal of flexible job shop scheduling is to rationally arrange
each job to be processed on the machine to minimize the makespan.

The production process follows the following constraints: (1) all jobs can be processed
at the initial time; (2) each machine can only process one job at a time; (3) each job cannot be
processed by more than one machine at the same time; (4) there is a sequential constraint
on the processes for the same job, and there is no sequential constraint on the processes for
the different jobs; (5) the priority of all jobs is the same.

3. Multi-Fidelity Optimization Approach Considering Preventive Maintenance of
the Machine

Multi-fidelity optimization involves a low-fidelity model (a simplified mathematical
representation) and a high-fidelity model (a discrete event simulation). In this paper, we
propose MOAPMM, inspired by Xu et al.’s [4] MO2TOS.

It consists of two modules: feasible solution generation and optimal solution selec-
tion. The feasible solution generation module employs a GA to quickly generate feasible
solutions. The optimal solution selection module uses the Enhanced Optimal Computing
Budget Allocation (EOCBA) method to select high-quality solutions; the high-fidelity sim-
ulation, considering the PM of the machine, prevents the increase in makespan caused
by machine failures; and the optimal scheduling scheme is chosen from the high-quality
solutions based on the simulation results. The flowchart of MOAPMM is shown in Figure 1.
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3.1. Feasible Solution Generation

The solution space of the flexible job shop scheduling problem is large, and the
mathematical model cannot get the near-optimal solution of the problem in finite time. In
this paper, GA is used as a low-fidelity model to generate feasible solutions directionally
through the operations of selection, crossover, and mutation, and each generation of feasible
solutions is saved to the set of feasible solutions.

3.2. Optimal Solution Selection

To avoid a time-consuming simulation of all feasible solutions, it is essential to select
a suitable number of high-quality solutions for simulation. Optimal Computing Budget
Allocation (OCBA) is a classic approach that divides feasible solutions equally into groups
and randomly selects the same number of solutions from each group for high-fidelity
simulation, and each selected solution consumes a high-fidelity budget. This operation is
repeated until the high-fidelity budget is exhausted.

However, this method assigns an equal probability to all feasible solutions, which
may not be conducive to the selection of better solutions. In this paper, we propose the
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EOCBA method for high-quality solution selection. This approach considers that while
high-fidelity and low-fidelity models may diverge in target values, their results are often
in agreement [5]. Therefore, in accordance with a sequentially decreasing ratio, a number
of solutions are chosen from each group for high-fidelity simulation, following the ratio
design principle: the ratio of high-quality solutions, denoted sc selected from group 1 to
g follows the pattern g : g− 1 : . . . : 2 : 1. This process is repeated until the high-fidelity
budget is exhausted. If the remaining viable solutions, denoted sr, in a group are less than
the number of sc solutions to be selected, the remaining unselected solutions sc − sr will be
included in the next group. Accordingly, the next group is required to select sc − sr + s′c
feasible solutions for high-fidelity simulation, where s′c indicates the originally planned
number of high-quality solutions to be selected for the next group.

To align with actual workshop production, this paper considers the degradation of
the machine’s performance over time. If not maintained quickly, the machine becomes
unusable. Therefore, in high-fidelity simulation, PM of the machine is taken into account. A
flexible job shop is created using flexSim@ 20.0.10, with each machine having a maintenance
threshold, denoted um. PM is performed before the machine’s cumulative processing time
exceeds um, resulting in a shorter maintenance time. Otherwise, the machine fails, resulting
in longer maintenance times. When a job cannot be processed on a machine due to PM, the
work is rescheduled using right shift rescheduling, as shown in Figure 2.
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Supposing um is 10 in Figure 2, the cumulative machining time tam of M3 is 7 after J32
finishes processing. However, since J12 requires a processing time of 4 on M3, tam exceeds
10, triggering the need for PM. With a maintenance time tpm of 2 units, M3’s tam resets to 0
after maintenance. Consequently, J12 must wait for the machine to undergo maintenance,
causing a 2-unit right shift at its start processing time, and other jobs to be processed also
need to be shifted to the right because the processing of jobs is subject to the conditions in
Section 2.

4. Numerical Example and Analysis
4.1. Parameter Settings

In order to verify the effectiveness of the proposed method, this paper takes the two
maintenance methods of PM and FM as comparison experiments in high-fidelity simulation
and combines the above two groups of experiments with EOCBA and OCBA high-quality
solution selection methods to form four groups of comparison experiments, and each
group of experiments is carried out with different high-fidelity budgets, respectively.
The budgets are strategically chosen to maximize the minimum budget required for the
optimal objective value using pre-experimental data. Multiple budget sets are generated at
5-interval intervals to facilitate the process.

In this study, we conducted experiments using the literature [5] with n = 8, ni = 4,
and m = 8. Set um to 20, tpm to 2, and FM time tfm to 10, all time units are in hours. The
feasible solutions are divided into five groups, and the high-quality solutions are selected
for simulation from the five groups according to a ratio of 5:4:3:2:1. If the number of
solutions to be selected is a non-integer calculated according to the ratio, the solutions will
be selected in accordance with the rounding principle for selection.

4.2. Results Analysis

Results are presented in Table 1 based on the experiments with the given parameters.
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Table 1. Individual program performance table.

Budge

PM FM

OCBA EOCBA OCBA EOCBA

Avg Max Min Avg Max Min Avg Max Min Avg Max Min

5 44.0 59 34 37.6 48 31 56.2 83 42 50.4 72 39
10 39.3 46 31 36.5 49 26 50.5 61 39 47.8 65 34
15 41.2 67 29 37.0 52 26 54.8 91 37 48.3 68 34
20 40.6 58 30 35.7 50 26 53.4 82 38 46.9 66 34
25 39.4 56 26 36.4 50 26 52.5 72 34 47.6 64 34

PM consistently outperforms FM in terms of performance, as shown in Table 1. By
proactively considering equipment availability and reducing downtime caused by failures,
PM yields superior results. Notably, both optimal solution selection methods, EOCBA and
OCBA, can obtain optimal scheduling solutions, but EOCBA uses a lower high-fidelity
simulation budget than OCBA, which can obtain optimal scheduling solutions faster and
reduce computing time.

5. Conclusions

This study proposes MOAPMM as a solution to the flexible shop scheduling problem,
considering machine failures. The method selects high-quality solutions using the EOCBA
method and conducts high-fidelity simulations considering machine PM to obtain the opti-
mal scheduling scheme. Experimental results show that this method is superior to the FM
simulation method. In addition, the EOCBA method reduces the high-fidelity simulation
budget and computation time while ensuring the quality of the solutions obtained.
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