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Abstract: In this paper, we propose a methodology for implementing an output feedback control
(OFC) strategy for a two-time-scale nonlinear system. A permanent-magnet DC motor model is
utilized. We estimated the states using a high-gain observer for a two-time-scale nonlinear system.
The results demonstrate the robustness and efficacy of the suggested OFC technique. Furthermore,
the output feedback control approach exhibits robustness to parametric uncertainties, thereby making
it feasible for practical implementation in a two-time-scale nonlinear system.

Keywords: output feedback control; high-gain observer; permanent-magnet motor; singularly
perturbed system; two-time-scale system

1. Introduction

Small parameters such as capacitances and time constants are the cause of the devel-
opment of singular perturbation theory. These parameters are usually ignored in dynamic
models to simplify the models; however, this over-simplification comes at a cost. Singular
perturbation theory ensures that this over-simplified model remains useful for analysis and
control design [1]. Multiple-time-scale systems are common in science and engineering
as many scientific and engineering processes exhibit multiple-time-scale behavior [2]. In
a two-time-scale system, some states evolve slowly with time, while other states evolve
at a faster rate with time. The state model of a system depends on a small perturbation
parameter ε, which is either the system’s parameter or injected artificially to produce a
two-time-scale system. Setting ε = 0 brings an abrupt change in the dynamic behavior of a
system and produces a reduced-order system [3].

The measurement of all the variables of interest in a dynamic system is not feasible
due to cost-related considerations or technical limitations. These constraints necessitate the
use of output feedback control (OFC) in place of full-state feedback control (SFC). The most
widely used solution to the problem, when states are required but not measured, is to use
an observer for state estimation. The Luenberger observer and Kalman filter are commonly
used for the state estimation of linear systems. For nonlinear systems, linear observers are
applied after linearizing the system about the equilibrium point. However, this technique is
local and only works when the states are evolved in the vicinity of the point of linearization.
For global results, nonlinear observers are used for nonlinear systems.

The theory of multiple-time-scale behavior has been developed and analyzed widely;
however, the nonlinear state estimation of multiple-time-scale systems is still an open
area of research. There are limited results on nonlinear observer design for nonlinear
singularly perturbed systems. However, these nonlinear state estimation techniques are
not appropriate in terms of observer gains when used for multiple-time-scale systems.
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With the advancements in nonlinear control theory, special attention has been given to
nonlinear observers. High-gain observers (HGOs), being robust to parametric and modeling
uncertainties, have gained more attention in nonlinear control systems [4]. Through the
utility of the separation principle, controls and observers can be designed separately,
and the results under SFC are similar to those of OFC given that the so-called high-gain
parameter approaches zero. In recent years, extensive research has been conducted on
the design, analysis and implementation of high-gain observers for nonlinear systems;
however, there is a lack of research and literature available on the topic of robust observer
design, for both slow and fast states simultaneously, using HGO.

In this article, we addressed the problem of state estimation via HGO for a class of
standard two-time-scale systems. We propose an HGO-based OFC technique for a two-
time-scale model of a permanent-magnet direct current (PMDC) motor. We show that the
proposed HGO follows the separation principle, i.e., as the value of the high-gain parameter
is reduced sufficiently, the response of OFC approaches that of SFC.

2. Output Feedback Control Design

Permanent-magnet motors are widely used in a large number of electrical and me-
chanical applications. Figure 1 shows the equivalent circuit of a PMDC motor. The dynamic
model of a PMDC motor at no load is represented by the following state equations [3]:

J
dω

dt
= kti, (1)

L
di
dt

= −kbω− Ri + E, (2)

where ω represents the angular speed, i denotes the armature circuit current, L represents
the armature inductance, J represents the rotor moment, R is the armature circuit resistance,
kb is the back emf constant and kt is the torque constant. The input of the system is input
voltage E, whereas the angular speed is the output of the system, defined as ω. Singular
perturbation theory states that the perturbation parameter ε should be dimensionless. Thus,
defining the dimensionless parameters as ωr = ω/ Θ and ir = iR/kbΘ and Er = E/kbΘ,
systems (1) and (2) take the following form:

Tm
dωr

dt
= ir, (3)

Te
dir
dt

= −ωr − ir + Er, (4)

where Tm = JR/ktkb and Te = L/R are mechanical and electrical time constants, respec-
tively. Since Tm � Te, defining a dimensionless time variable tr = t/Tm, the systems
(3) and (4) takes the following form:

dωr

dtr
= ir, (5)

ε
dir
dtr

= −ωr − ir + Er, (6)

where the dimensionless perturbation parameter ε is defined as:

ε =
τe

τm
=

Lktkb
JR2 , (7)

Setting ε = 0 in (6),
ir = −ωr + Er = h(x), (8)
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and with a change in coordinates y = ir − h(x) = ir + ωr − Er, and taking the input voltage
Er = −k1ωr − k2ir, the boundary-layer model

dy
dτ

= −(1 + k2)y, (9)

is globally exponentially stable for k1 = 1 and k2 > −1, and the HGOs for the slow and
fast variables are taken as:

dω̂r

dtr
= îr +

α1

ε
(ωr − ω̂r), (10)

ε
dŷ
dtr

= −(1 + k2)ŷ +
β1

ε
(ωr − ω̂r), (11)

with the globally bounded control law

Er = −k1ω̂r − k2 îr, (12)

whereas the control input can be globally bounded by saturating it outside the region of
interest and îr = ŷ− ω̂r − Er.
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lated in MATLAB. The parameters utilized are: 𝐽 = 1.8 × 10  kgm , 𝑘𝑡 = 0.057 Nm/A, 𝑘𝑏 = 0.057 Vs/rad , 𝐿 = 0.9 mH , 𝑅 = 10 Ω , 𝜔 0 = 0.1 , 𝑖 0 = 0.5  and 𝜔 0 = 𝚤̂ 0 =0. The controller parameters 𝑘 = 𝑘 = 1 and the observer parameters are taken as 𝛼 =𝛽 = 2, whereas the high-gain parameters are chosen such that 𝜀̅ = 𝜀 = 0.1. The control 
input is constrained within the range of 0 to 10. Within a 20% range, the parameters devi-
ate from their nominal values. 

Figure 2a shows a comparison of the angular speed under SFC and OFC. The slow 
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Figure 2b. The current exhibits a fast transient initially due to the two-time-scale system. 
The response under SFC approaches the response under OFC for angular velocity and 
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the observer. Figure 2c shows the estimation error of the angular velocity and current. The 
input voltage response under OFC is presented in Figure 2d. 

Figure 2 shows that the estimation error of the fast state converges more rapidly com-
pared to the slow state. Hence, as the estimation error becomes zero quickly, the slow state 

Figure 1. Equivalent Circuit of permanent-magnet DC Motor.

3. Simulation Results

This section presents the simulation results of the OFC designed for the PMDC motor
model. To investigate the efficacy of the designed HGOs on the PMDC model, it is simu-
lated in MATLAB. The parameters utilized are: J = 1.8× 10−4 kgm2, kt = 0.057 Nm/A,
kb = 0.057 Vs/rad, L = 0.9 mH, R = 10 Ω, ωr(0) = 0.1, ir(0) = 0.5 and ω̂r(0) = îr(0) = 0.
The controller parameters k1 = k2 = 1 and the observer parameters are taken as α1 = β1 = 2,
whereas the high-gain parameters are chosen such that ε = ε = 0.1. The control input is
constrained within the range of 0 to 10. Within a 20% range, the parameters deviate from
their nominal values.

Figure 2a shows a comparison of the angular speed under SFC and OFC. The slow
state ω shows a slow transient in the response. The response of the fast state is shown in
Figure 2b. The current exhibits a fast transient initially due to the two-time-scale system.
The response under SFC approaches the response under OFC for angular velocity and
current. Thus, the state estimation using the high-gain observer shows the robustness of
the observer. Figure 2c shows the estimation error of the angular velocity and current. The
input voltage response under OFC is presented in Figure 2d.

Figure 2 shows that the estimation error of the fast state converges more rapidly
compared to the slow state. Hence, as the estimation error becomes zero quickly, the slow
state estimation is guaranteed to converge in finite time. The input voltage depicts a peak
due to the fast convergence of the fast state. However, this could be reduced by restricting
the input signal inside the region of interest and making the input globally bounded.
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Figure 2. (a) Angular speed of the PMDC under SFC and OFC. (b) Armature current under SFC and
OFC. (c) Estimation error of the estimated states with measured states. (d) Input voltage under OFC.

4. Conclusions

In this article, an OFC is designed for a two-time-scale nonlinear system. The proposed
OFC is demonstrated on a PMDC motor example to provide empirical evidence regarding
the effectiveness and robustness of the observer. The results demonstrate that the response
under OFC not only matches that under state feedback control, but also shows immunity
to parametric uncertainties, which makes it practically implementable for two-time-scale
nonlinear systems.
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