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Abstract: In Pakistan, residential energy consumption is predominantly devoted to ensuring thermal
comfort, making energy reduction a significant task in building load management. Windows,
which are notorious for having poor thermal barriers, contribute considerably to energy losses
under harsh weather conditions. Incorporating high thermal inertia materials in windows, such
as transparent insulation materials (TIM) and phase change materials (PCM), offers the potential
for energy reduction. Using numerical simulations in ANSYS Fluent, this study compares three
window types and explores their influence on interior temperature. The findings show that PCM-
based windows have a low temperature increase during the melting phase, indicating their great
energy-saving potential. Furthermore, PCM absorbs almost 90% of exposed heat, emphasizing its
usefulness for energy saving in the Pakistani building industry.
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1. Introduction

Growing worldwide worries about energy consumption, CO2 emissions, the effects
of climate change, and energy crises have generated a critical need for efficient energy
reduction methods in both developed and developing countries. The construction industry
stands out as a key contributor to the spectrum of energy-consuming industries, owing
to the large energy needs associated with heating and cooling requirements [1]. As a
result, it is critical to investigate novel techniques that might handle these energy concerns
comprehensively and lead to more sustainable construction practices.

The use of phase change materials (PCMs) in the building envelope is one possible
path for improving energy efficiency and lowering dependency on traditional energy
sources. PCMs have an extraordinary capacity to absorb and release significant quanti-
ties of thermal energy during phase transitions such as melting and solidification while
maintaining essentially constant temperatures [2–6]. Buildings can benefit from utilizing
the latent heat capabilities of PCMs in a variety of ways, including greater thermal com-
fort, improved energy performance, lower energy consumption, and a reduction in peak
temperature loads.

Traditional coated windows, which have long been used in building construction,
have drawbacks such as high total heat transfer coefficients and insufficient thermal insula-
tion [7]. As a result, researchers have concentrated on developing alternative approaches
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to overcome these flaws and optimize the thermal properties of glazed windows. Var-
ious solutions, such as the use of laminated glass, multilayered glass, evacuated glass,
intelligent glass, and the insertion of elements, such as gases, aerogels, and phase change
materials within window cavities, have been examined [8–13]. Filling the spaces between
windowpanes with PCM has emerged as a particularly promising option for improving
the thermal efficiency of glazed windows among these approaches. Solar thermal energy
may be successfully captured during the day and gradually released at night by using
PCM, such as high thermal storage density paraffin wax, effectively managing interior
temperature conditions.

In the context of Pakistan’s climatic conditions, especially in Islamabad, this study
focuses on rigorous numerical simulations using ANSYS Fluent to investigate the possible
advantages and energy-saving implications of adding PCM to double-glazed windows. We
intend to assess the usefulness of PCM integration in minimizing excessive heat absorption
via windows by analyzing the performance of various window layouts. Previous research in
comparable fields has shown that numerical simulations and experimental findings match
well, providing confidence in the use of numerical models in analyzing the performance of
PCM-based systems [14].

This study addresses two key issues: Firstly, most research on phase change materials
and energy-efficient windows has focused on climates outside of Pakistan. Secondly,
there is limited knowledge of the energy-saving potential of different passive window
variants in Pakistan’s climate conditions. Therefore, this study investigates various passive
window options specifically for Pakistan’s climate, utilizing numerical analysis to assess
their energy-saving capabilities. The establishment of a numerical model facilitates further
exploration for future research.

2. Model Description

This research study delves into the intricate process of heat transfer through windows,
focusing on the utilization of Phase Change Materials (PCM) and Translucent Insulation
Materials (TIM). The objective is to compare and analyze the thermal behavior of three
distinct types of double-glazing windows.

Solar radiation takes center stage as the primary driver of heat transfer, with conduc-
tion and convection playing secondary roles. The window prototypes shown in Figure 1
comprise a 5 mm thick glass layer, accompanied by an air gap, TIM, and PCM. Notably,
the PCM utilized in this study is RT25 paraffin wax, chosen for its exceptional thermal
properties, while the TIM employed is silica aerogel, renowned for its translucent insulation
capabilities.
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Figure 1. Schematic of (a) air-based, (b) TIM-based, and (c) PCM-based windows.

The model incorporates the thermophysical properties of the materials involved,
including RT25 PCM and silica aerogel TIM. These properties are essential for accurately
simulating the heat transfer characteristics and assessing the thermal performance of the
windows as given in Table 1.
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Table 1. Thermo-physical properties of RT25 and TIM.

Parameters PCM RT25 TIM

Solidus Temperature 27 ◦C -
Liquidus Temperature 29 ◦C -
Latent Heat of Fusion 230 KJ/Kg -
Specific Heat Capacity 2 KJ/Kg.K 1500

Density Liquid 0.77 Kg/L -
Density Solid 0.88 Kg/L 0.1 Kg/L

Thermal Conductivity 0.2 W/m.K 0.018 W/m.K

3. Governing Equations and Model Validations

The Fluent software (ANSYS 2022) is used for simulating the melting process within
the enclosure. The enthalpy–porosity approach is employed, calculating the melt fraction
instead of tracking the melt interface. Assumptions include laminar and transient PCM
melting flow, constant thermophysical properties, except for density variations with tem-
perature, and the utilization of Boussinesq approximations for handling density changes
during natural convection. In this numerical simulation, the continuity and energy equa-
tions are provided as follows:

∂

∂xi
(ρui) = 0, (1)

∂(ρH)

∂t
+∇.

(
ρ
→
VH

)
= ∇.(k∇T) + S, (2)

where ρ is the density of PCM,
→
V is the velocity of the fluid, and S is the heat generated

within PCM, which will be zero. k is the thermal conductivity of PCM and H is the total
enthalpy of the system given by (Equation (3)):

H = h + ∆H, (3)

The numerical model was initially validated by solving and comparing the same
problem as reported by Ravindra D. Jilte et al. [15]. The results of the present model
demonstrated strong agreement with Ravindra D. Jilte et al. [15] shown in in Figure 2 with
variations of less than 5%. This validation confirms the reliability of the present model
in terms of formulation and grid independence. Subsequently, the validated model was
utilized for additional simulations.
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4. Results and Discussions

The numerical results from this study reveal important insights into the performance of
different window types in controlling room temperature. With a peak ambient temperature
of 45 ◦C in Islamabad, the desired room temperature was set at 26 ◦C, which led to the
selection of a suitable phase change material (PCM).

Using ANSYS Fluent, the PCM’s solidification and melting behavior were simulated
under transient conditions. A constant heat flux of 900 W/m2 was applied to the windows’
outer glass surface. The simulations demonstrated the PCM’s ability to absorb and store
heat, regulating room temperature by capturing excess heat from the environment.

Comparing different window types, the PCM-based window exhibited the lowest
heat flow as shown in Figure 3c, 98% lower than the air-based window. The heat flow
remained constant over time for the PCM-based window, while it increased for the air-based
and translucent insulation material (TIM)-based windows. After 5400 s, the TIM-based
window’s heat flow was 31.51% lower than the air-based window, indicating the TIM’s role
in reducing heat transfer.
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Regarding indoor temperatures, the PCM-based window maintained the lowest tem-
perature shown in Figure 3d, 69 ◦C lower than the air-based window. The PCM-based
window’s indoor temperature remained relatively constant, while it rose rapidly for the
air-based window and at a slower rate for the TIM-based window. The TIM-based window
showed an indoor temperature 59 ◦C lower than the air-based window, demonstrating
its effectiveness in reducing heat transfer. Additionally, there was a 10 ◦C temperature
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difference between the TIM-based and PCM-based windows, highlighting the PCM-based
window’s superior ability to block solar radiation.

Overall, these findings underscore the significance of window type selection in control-
ling indoor temperature. The PCM-based window proved to be the most efficient solution,
offering potential benefits for energy efficiency and thermal comfort in buildings.

5. Conclusions

This study provides valuable insights into the heat transfer characteristics and per-
formance of different window types in controlling the thermal conditions within a room.
By carefully selecting a suitable phase change material (PCM) and employing numerical
simulations using the pressure-based solver in ANSYS Fluent, we were able to investigate
the solidification and melting behavior of the PCM and analyze its impact on heat transfer.

The results demonstrate that the PCM-based window exhibits the lowest heat flow
among the three window types studied. With a reduction of 98% compared to the air-based
window, the PCM-based window effectively absorbs and stores heat during the melting
process, preventing the majority of it from entering the room. Only a small amount of
8 W/m2 of heat is transferred to the room, resulting in improved thermal insulation.

Furthermore, the PCM-based window demonstrates temperature stability, maintaining
a relatively constant indoor temperature. In contrast, the air-based window experiences a
rapid temperature rise, while the TIM-based window shows a slower temperature increase.
The TIM-based window also provides a notable temperature reduction of 59 ◦C compared
to the air-based window, indicating the effectiveness of thermal interface materials in
reducing heat transfer.

The observed temperature difference of 10 ◦C between the TIM-based window and
the PCM-based window highlights the superior ability of the PCM-based window to block
solar radiation. This finding underscores the potential energy efficiency benefits associated
with PCM-based windows.

Overall, the findings of this study emphasize the significant impact that different
window types have on indoor temperature control. The PCM-based window emerges as a
highly effective solution for maintaining lower indoor temperatures and minimizing heat
transfer from the external environment. These results contribute to our understanding of
energy-efficient building design and highlight the potential advantages of incorporating
PCM-based windows in real-world applications.

Future research could further investigate the long-term performance and durability
of PCM-based windows, as well as explore the potential for optimizing PCM properties
to enhance their heat transfer characteristics. Such advancements would contribute to the
development of sustainable and energy-efficient building solutions.
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