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Abstract: Superplastic aluminum (Al) alloys can be used in the forming processes to fabricate complex
geometry components for a wide range of applications in the automobile industry, where light weight
and high stiffness are needed. Those alloys exhibit extreme tensile elongation of more than 300% at a
high homologous temperature and appropriate low strain rate. Superplasticity occurs in Al alloys via
the mechanisms of grain boundary sliding, solute drag creep and diffusion creep. Grain boundary
sliding usually leads to extensive superplasticity. The activation of grain boundary sliding depends
on grain size, strain rate sensitivity, deformation temperature and alloy chemical composition. A
complete understanding of influencing factors on Al alloy superplasticity is the key to developing
novel superplastic Al alloys. This review discusses the superplastic behavior of several Al alloys,
especially focusing on Al-Mg 5xxx alloys. It highlights the mechanisms that govern superplasticity of
Al alloys at a low and high strain rate. The factors which influence superplasticity are analyzed. As
practice industrial applications, high-cycle-time superplastic forming operations such as quick plastic
forming and high-speed blow forming are briefly discussed.

Keywords: aluminum alloys; superplasticity; grain boundary sliding; quick plastic forming; high-
speed blow forming

1. Introduction

Conventional metallic alloys usually exhibit a tensile elongation of less 100% [1]; how-
ever, superplastic alloys display tensile elongation of more than 300% [2]. Superplastic
behavior of metallic alloys has been exploited commercially to fabricate complex geometry
components, which are impossible to be formed via conventional cold forming opera-
tions [3,4]. The forming operation that harness the superplastic response of metallic alloys
is called superplastic forming (SPF) [3,5]. SPF is an attractive forming process due to the
use of low processing energy and simple tools, which reduces manufacturing cost [5–9].
However, SPF is a slow-cycle-time operation, and this limits its use in the automobile
industry [3,10].

Metallic alloys that exhibit superplastic behavior include: titanium, magnesium, du-
plex stainless steels and aluminum alloys [4]. Among them, Al alloys have found extensive
SPF application in the automobile sector due to the need to reduce the weight and minimize
fuel consumption and hence greenhouse effect [11]. Superplastic Al alloys are usually
employed for fabricating automobile body panels. Many Al alloys exhibit superplastic
behavior; however, those of commercial interest are AA2004, AA7475 and AA5083 [12].
Among them, the Al-Mg 5xxx alloys are of special interest to automakers due to their good
mechanical strength, good weldability, high corrosion resistance [5,7] and low production
cost [13]. However, Al-Mg 5xxx alloys exhibit relatively low superplasticity compared to
other superplastic Al alloys [7]. Hence there is an urgent need to develop novel superplastic
Al-Mg 5xxx alloys for the automobile industry.

Superplasticity occurs in Al alloys via the mechanisms of grain boundary sliding
(GBS), solute drag creep (SDC) and diffusion creep (DC). GBS usually leads to extensive
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superplasticity. The activation of GBS strongly depends on grain size (<10 µm), high strain
rate sensitivity (m-value > 0.3) and low strain rate [14–16]. In contrast, SDC and DC are
less sensitive to grain size [16–18] but usually lead to low superplastic elongation [1]. SDC
involves both dislocation and diffusional processes and dominates superplastic deformation
of Al alloys at a high strain rate and elevated temperature. DC involves diffusional material
transport along grains boundaries (or within grains) at elevated temperature and low
strain rates [1,19]. Superplasticity of Al alloys is greatly influenced by the grain size, strain
rate sensitivity, strain rate, deformation temperature, alloy chemical composition and
mechanism that dominates the deformation process. A complete understanding of the
influencing factors on Al alloy superplasticity is the key to developing novel superplastic
aluminum alloys.

This review discusses the superplastic behavior of several Al alloys, especially focusing
on Al-Mg 5xxx alloys. It highlights the mechanisms that govern superplasticity of Al alloys
at a low and high strain rate. The factors which influence superplasticity are analyzed.
Alternative high-cycle-time superplastic forming operations such as quick plastic forming
and high-speed blow forming are briefly discussed.

2. Superplastic Al Alloy

Many Al alloys exhibit superplastic behavior. AA2004, which is commercial known
as Supral, is the first superplastic aluminum alloy developed in 1980 [7]. AA2004 exhibits
thermal elongation of 1200% at a strain rate of 1 × 10−3 and 450 ◦C. It displays, however,
moderate strength (315 MPa), and as such, it does not meet requirements for high-strength
applications [7]. AA7475 alloys, which exhibited good superplasticity (1000%) and high
strength (462 MPa), were developed for high-strength structural applications in the aircraft
industry [7]. Several variants of Al alloys have been developed, and their superplastic
performance has been the subject of much research, as shown in Table 1.

Table 1. Superplastic aluminum alloys.

Alloys Temperature (◦C) Strain Rate Elongation (%) m-Value Ref.

AA2004 (Al-6Cu-0.4Zr) 450 1 × 10−3 1200 0.60 [7]
AA7475

(Al-5.5Zn-0.5Mg-1.5Cu-0.2Cr) 516 2 × 10−4 1000 0.85 [7]

Al-3.9Zn-4.1Mg-2.8Ni-0.25Zr 440 1 × 10−2 1200 0.47 [20]
Al-3.7Zn-4.2Mg-0.15Sc-0.20Zr 420 2 × 10−3 800 0.47 [20]

Al-Zn-Mg-0.1Sc-0.1Zr 500 5 × 10−3 1080 0.5 [21]
Al-4.8Mg-0.6Mn-0.2Cr 545 4 × 10−3 300 0.65 [22]

Al-(6.5–7.8)Mg-0.7Mn-0.2Cr 519–527 4 × 10−3 430 0.65 [22]
Al-Mg-Fe-Ni-Sc-Zr 460 1 × 10−2 750 0.49 [5]
Al-Mg-Fe-Ni-Sc-Zr 460 1 × 10−1 535 0.46 [5]

Recently, Al-Mg 5xxx superplastic alloys have been developed for application in
automotive, architectural and aerospace industries. Superplastic Al-Mg 5xxx alloys are of
special interest to automakers. However, they exhibit low superplastic elongation compared
to other superplastic aluminum alloys, as shown in Table 1. Research efforts are currently
focused on enhancing the superplastic response of Al-Mg superplastic alloys, especially at
a high strain rate.

Mikhaylovskaya et al. [22] developed an Al-Mg 5xxx alloy which exhibits a super-
plastic elongation of 430% at a high Mg content (6.5–7.8 wt%). Similarly, Kishchik et al. [5]
observed an improvement in the superplasticity of Al-Mg 5xxx alloys due to small addition
of Ni, Sc and Zr. The alloy exhibited high-strain-rate superplasticity (HSRS) of 535% at a
strain rate of 1 × 10−1 and 460 ◦C (Table 1).

Commercial superplastic Al alloys are produced through two distinct thermome-
chanical treatments (TMTs): (1) discontinuous recrystallization and (2) continuous recrys-
tallization [23,24]. For the discontinuous recrystallization TMT method, the Al alloy is
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first subjected to overaging treatment to create coarse precipitate particles (about 1 µm
in size) before rolling is carried out [24]. During cold rolling, heavily deformed zones
are formed around the coarse particles, which serve as nucleation sites for the formation
of a fine equiaxed grain structure (Figure 1a) [23–25]. This mechanism is called particle
stimulate nucleation (PSN) [24], and it occurs during annealing treatment of the alloys prior
to superplastic forming. Superplastic aluminum alloys produced via this method include
AA5083 [23] and AA7475 [12,26].
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Figure 1. Schematic diagram showing microstructures of Al alloys (a) produced via discontinuous
recrystallization and (b) produced via continuous recrystallization. (Actual images can be found
in [23]).

For the continuous recrystallization TMT route, the cast Al alloys are usually heat-
treated after hot rolling to form nanoscale (~10–50 nm) dispersoids in the microstruc-
ture [12,23,24]. The dispersoids suppress discontinuous recrystallization [25] during warm
rolling and ensure the creation of a bonded microstructure as shown schematically in
Figure 1b. The misorientations between the subgrains increase during superplastic defor-
mation, and this results in the evolution of a fine-grained microstructure [23] via a dynamic
recrystallization process. A fine equiaxed grain structure is usually required to enhance the
superplastic response of Al alloys [12]. Superplastic Al produced by this method includes
Supral (Al-Cu-Zr) and AA8090 [12,23].

3. Mechanisms of Superplasticity in Al Alloys

Superplasticity occurs via three main mechanisms, namely GBS, SDC and DC [27].
Pearson was the first to identify GBS as a mechanism of superplasticity [28]. GBS controls
region II superplastic deformation (SD) where the stress exponent (n) is 2 [1]. GBS usually
leads to extensive superplasticity (>400%) and its activation strongly depends on a fine
grain size (<10 µm) and high strain rate sensitivity (m-value > 3) [14–16]. As the grains
become finer, the stain rate sensitivity value (m-value) increases [29]. A high m-value
impedes the flow localization, which enhances GBS [1]. GBS is believed to occur within
grain boundaries (Figure 2b) and accommodated by dislocation activities [1] in narrow
mantel-like regions close to the grain boundary [17,24].

SDC occurs through the gliding of dislocations at elevated temperatures, and it can
yield tensile elongation between 100 and 400% [16]. The activation of SDC is independent of
grain size [16–18], and as such, it can occur in coarse-grained alloys. SDC is the mechanism
that controls region III superplastic deformation (stress exponent > 3) where the strain rate
is high, and the strain rate sensitivity is low (<3) [1]. Typically, SDC-controlled deformation
leads to the formation of subgrains, which results from the arrangement of dislocations
into a low-energy configuration [1,16]. DC involves diffusional material transport along
grains boundaries (or within grains) at an elevated temperature, as shown in Figure 3. It is
observed within region I of superplastic deformation at a low strain rate and stress exponent



Eng. Proc. 2023, 43, 43 4 of 9

of 1 [1]. DC does not involve any dislocation processes and is usually characterized by
grain growth [1,19], which limits superplastic elongation.
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GBS is widely accepted as the main superplastic mechanism for Al alloys. However,
several researchers contradict this popular view [18–20,23,30]. For superplastic Al-Mg
5xxx alloys, the main deformation mechanisms are SDC and DC [23,31]. SDC and GBS
are believed to operate independently, and as such, the fastest one of the two mechanisms
controls the superplastic response of the alloy at a given temperature and strain rate [24].
Studies have shown that the deformation mechanism can change during superplastic
flow [17,18,24]. Hsiao and Huang [18] observed a transition from SDC to GBS for AA5083
alloy at large strains ( ε > 0.5) during superplastic forming. The deformation mechanism
changed with the change in deformation temperature. SDC dominated at low temperatures
(<250 ◦C) and medium temperatures (300–400 ◦C), while GBS became the dominated
mechanism at elevated temperature (>400 ◦C) [18]. McNelly et al. [17] observed a similar
transition when the strain rate of the deformation of AA5083 alloy was changed, in which
GBS dominated at low strain rates, while SDC became the dominate mechanism at high
strain [17]. Some experimental studies confirmed SDC as the main mechanism for high-
strain-rate superplasticity of Al-Mg 5xxx alloys. Kishchik et al. [5] developed a high-strain-
rate superplastic Al-Mg-Fe-Ni with a small addition of Sc and Zr. The alloy displaced a
superplasticity of 535% at a strain rate of 1 × 10−1 s−1 [5], and deformation was controlled
by dislocation slip [14].

Superplastic Al-Mg 5xxx alloys exhibit comparatively low superplasticity due to the
weak response to GBS. In these alloys, GBS is impeded due to the formation of Al-Mg
clusters at grains boundaries (GB) [22]. A high-angle grain boundary (HAGB) promotes
GBS; however, there is a higher tendency for Mg to segregate at an HAGB than at a low-
angle grain boundary (LAGB) [32]. Thus, the formation of clusters at HAGBs is easier,
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and it suppresses GBS. The superplasticity of Al-Mg alloys can be enhanced through the
development of a grain boundary structure which is responsive to GBS. The kinetics of
GBS is greatly influenced by grain boundary structure and state [33]. The grain boundary
structure approach has been explored in ultra-fined grained Al-Zn-Mg alloys [33,34]. In
those alloys, Mg and Zn atoms segregate at the grain boundary and form a grain boundary
structure, which responds readily to GBS [33,34]. Ultra-fine-grained Al alloys are produced
via severe plastic deformation processes, including high-pressure torsion (HPT), friction
stir processing (FSP), accumulative roll bonding (ARB) and equal-channel angular pressing
(ECAP) [35], which are expansive and cannot be used for the large scale production of
superplastic Al sheets [21].

Although GBS results in extensive superplasticity, it has been observed that cavitation
growth rate is high under GBS compared to SDC [17]. During GBS, cavities can easily
nucleate and grow within the vicinity of constituent particles, grain triple junctions and
grain boundary ledges due to stress concentration [17,21], leading to the loss of formability
and premature failure.

4. Factors Affecting Superplasticity of Al Alloy
4.1. Effect of Grain Size and Texture

As discussed earlier, Al alloys exhibit extensive superplastic elongation when defor-
mation is controlled by GBS. It is well known that GBS is a grain size-sensitive mecha-
nism [5,23,24,31]. The finer the grain size, the higher GBS contribution to superplastic
elongation of the alloys [31]. Lui et al. [35] observed a high GBS contribution (72%) to
the superplastic flow due to the presence of ultrafine grains (0.6 µm) in Al-Mg-Sc alloy
produced via friction stir processing (FSP). The high GBS contribution was attributed to the
high fraction of the high-angle grain boundary (HAGB) in the alloy prior to superplastic de-
formation [35]. Thus, grain size and texture have a profound influence on the superplastic
response of Al alloys.

Duan et al. [21] reported a superplastic elongation of 1050% in a high-textured Al-
Zn-Mn-Sc alloy produced via thermomechanical treatment. The high superplasticity was
attributed to the transformation of the high fraction of the low-angle grain boundary (LAGB)
to the HAGB during deformation to sustain GBS [21]. Kishchik et al. [5] observed a super-
plastic elongation of 750% in Al-Mg-Fe-Ni alloy, which had a banded microstructure prior
to superplastic deformation. The dynamic recrystallization process led to the formation
of equiaxed grains (2–4 µm) with an HAGB, which was ideal for GBS, and this accounted
for the high superplasticity [5]. High-strain-rate superplasticity and low-temperature
superplasticity can be achieved when the grains become finer [33–35].

4.2. Effect of Precipitation (Precipitates, Dispersoids)

Dispersoids and intermetallic phases have profound effect on the superplastic perfor-
mance of Al alloys. Their presence promotes the formation of the required microstructure
and ensures it remains thermally stable during superplastic forming [5,19]. The high con-
tent of fine (size < 100 µm) dispersoids enhances thermal stability by suppressing grain
growth via the Zener pinning mechanism [5,23,36]. Also, ultra-fine (5–10 nm) dispersoids
impede recrystallisation during heating of Al alloy (with a banded microstructure) to the
deformation temperature [5].

Dispersoids are formed by the addition of transition metals such as Cr, Zr, Sc and Mn
to aluminum [37]. Among them, Sc and Zr form coherent Al3(Sc,Zr) dispersoids, which
are more effective at suppressing grain growth and enhancing superplasticity [21,26,36].
Yakovtseva et al. [14] observed an enhancement in the superplasticity of Al-Mg alloys
due to the minor addition of Sc and Zr. In addition for impeding grain growth, Sc and
Zr additions promote dynamic recrystallization, which results in the formation of a more
refined grain structure, hence improving superplasticity [14,36]. Algendy et al. [38] also
observed the formation of fine recrystallized grains in Al-Mg alloys during hot deformation
due to the small addition of Sc and Zr.
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Scandium is expensive [21], and it is desirable to reduce its content or find a suitable
replacement. Kotov et al. [26] investigated the superplastic response of two Al-Zn-Mg-Cu-
based alloys (A and B); alloy A contained Sc and Zr, while alloy B contained Zr and Ni
without Sc. The Sc-free alloy exhibited extremely high superplasticity (1200%) compared to
the Sc-containing alloy (430%) at constant strain rates of 1 × 10−2 and 440 ◦C. The Sc-free
alloy contained bimodal particles (fine coherent Al3Zr and coarse eutectic Al3Ni particles),
which facilitated the formation of a more refined and thermally stable grain structure
compared to the Sc-containing alloy with only Al3(Zr,Sc)) [26]. Similarly, Mikhaylovskaya
et al. [36] observed that the addition of Ni and Fe to Al-Zn-Mg alloy (containing 0.1% Sc and
0.22% Zr) forms bimodal particles (Al3(Zr,Sc) dispersoids and eutectic Al9FeNi particles),
which enhanced the superplasticity of the alloy. In both reports, the dispersoids suppressed
grain growth, while the coarse eutectic particles enhanced dynamic recrystallization via
PSN during superplastic deformation [26,36]. Thus, the use of the bimodal particles
approach could provide a viable means for developing novel superplastic aluminum alloys
without the addition of Sc.

Recently, Mikhaylovskaya et al. [22] reported that increasing the Mg content from
4.8 to 6.5–7.6 wt% in Al-Mg-based alloys retarded grain size growth. Consequently, GBS
was enhanced, while diffusional creep decreased, and it increased the superplastic elon-
gation from 300 to 430% [22]. Similarly, Kishchik et al. [25] reported that an increase in
Mg content from 4.9 to 6.8 wt% in Al-Mg-based alloys resulted in superplastic elongation
of 475%. The enhancement of the superplasticity was attributed to the formation of a
more refined recrystallized grain structure (4 ± 0.2 µm) due to the high volume fraction of
uniformly distributed course (∼1 µm) Al3Mg2 particles [25].

4.3. Effect of Temperature

Superplasticity is essentially a thermally activated process, which occurs at a high
homologous temperature [1,2,27]. Al alloys exhibit different superplastic responses at
different temperatures due to the dynamic temperature effect on flow stress, strain rate
sensitivity and thermal stability of the microstructure. The flow stress usually decreases
with increasing temperature [12,39], which eases deformation. The strain rate sensitivity
(m-values) is found to be high at elevated temperatures. Kotov et al. [26] reported m-values
of 0.45–0.47 for Al-Zn-Mg-Cu-based alloys at 420–480 ◦C, which is ideal for GBS. Hsiao
et al. [18] observed different superplastic response of AA5083 alloys due to the variation in
m-values with temperature, and the m-values of 0.25 and 0.55 were recorded at 250 and
550 ◦C, respectively [18]. Elevated temperature deformation can lead to dynamic grain
growth [19,23], which weakens GBS and affects the superplasticity of Al alloys. Recent
research [33] focused for developing low-temperature superplastic Al alloys to ensure
green and low-cost manufacturing.

5. High-Strain-Rate Superplastic Forming Processes

As mentioned earlier, superplastic forming (SPF) is cost effective and facilitates the
fabrication of large and complex components [5–9]. However, the major drawback of SPF
is the slow cycle time (low production rate), which limits its application in the automotive
industry [3,10]. This is largely due to the fact that Al alloys display superplasticity at low
strains. Increasing the deformation rate leads to a poor superplastic response. A recent
work [14] focused on developing high-strain-rate superplastic aluminum alloys and, thus,
Al alloys that can exhibit high superplasticity at a high strain rate (>0.01 S−1).

An alternative approach to address the low-production-rate SPF is the development
of high-cycle-time forming processes such as quick superplastic forming (QPF) and hybrid
superplastic forming (HPF) [10]. HPF involves the use of mechanical deformation and SPF
to fabricate parts. An example of HPF is high-speed blow forming (HSBF), which combines
crush forming and SPF to fabricate complex automobile parts. The cycle time of HSBF is
about 30 times higher than conventional SPF and can even be employed to fabricate parts
from a low-superplastic metallic alloys sheet [10]. HSBF holds prospects for high-cycle-time
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forming operation; however, there is the need to study the effect of the forming parameters
(temperature and strain rate) on the deformation mechanisms, microstructure evolution
and superplastic response of the alloy. This will facilitate the optimization of HSBF and
develop novel superplastic alloys tailored to HSBF.

6. Conclusions

1. The superplastic response of Al alloys is greatly influenced by the microstructure of
the alloy prior to superplastic deformation and how the microstructure evolves during
the forming process. This determines the deformation mechanism that operates and,
hence, the amount of superplastic elongation.

2. Grain boundary sliding is the dominate mechanism in Al alloys, which exhibits
high superplasticity. Al-Mg 5xxx alloys show limited superplasticity due to weak
GBS. The weak GBS is due to the formation of Al-Mg clusters at grains boundaries.
The GB structure modification approach could be a viable means for developing
high-performance superplastic Al-Mg 5xxx alloys.

3. Diffusion creep and solute drag creep are the main deformation mechanisms in Al-Mg
5xxx alloys. Diffusion is characterized by grain growth, which impedes superplastic
performance. Solute drag creep is the mechanism responsible for the high-strain-rate
superplasticity of Al alloys.

4. Dispersoids and intermetallic phases have a profound effect on the superplastic
performance. The bimodal particle approach that combines nano-sized dispersoids
and micro-sized eutectic particles in the alloy is a key strategy for developing a fine-
grained and thermally stable microstructure that is ideal for GBS. This approach allows
the maximum exploitation of dynamic recrystallization to develop novel superplastic
Al alloys.

5. High-speed blow forming is ideal for high-cycle-time forming processes. A deep
understanding of the effect of the forming parameters (temperature and strain rate)
on the deformation mechanisms, microstructure evolution and superplastic response
of Al alloys will facilitate the optimization of HSBF operations and the development
of superplastic alloys tailored to HSBF.
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