
Citation: Piluso, V.; Pisapia, A.

Experimental and Analytical Study of

SHS Aluminium Members under

Uniform Compression. Eng. Proc.

2023, 43, 39. https://doi.org/

10.3390/engproc2023043039

Academic Editor: Mario Fafard

Published: 25 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Experimental and Analytical Study of SHS Aluminium
Members under Uniform Compression †

Vincenzo Piluso and Alessandro Pisapia *

Department of Civil Engineering, Univeristy of Salerno, 84084 Fisciano, Italy; v.piluso@unisa.it
* Correspondence: alpisapia@unisa.it
† Presented at the 15th International Aluminium Conference, Québec, QC, Canada, 11–13 October 2023.

Abstract: The aim of this work was to study the ultimate behaviour of box-shaped aluminium
members subjected to uniform compression. Eight stub column tests have been carried out at
the University of Salerno. In particular, four box sections made of 6060 aluminium alloys with
different width-to-thickness ratios have been investigated. The results have been reported in terms
of the maximum compressive resistance and corresponding deformation capacity. Subsequently,
the experimental results have been compared with those obtained by two accurate methodologies:
(1) a theoretical procedure based on the deformation theory of plasticity (J2); and (2) an extension of
the effective thickness method (ETM) provided by Annex L of the Eurocode 9 draft. These approaches
take into account the local buckling effects within the elastic-plastic region, the strain-hardening
be-haviour of the aluminium material, and the interaction between the plate elements constituting
the cross-section. Finally, a comparison between new methodologies and current design rules has
been presented.

Keywords: aluminium alloys; box-shaped member; stub test; Eurocode 9; uniform compression;
local buckling

1. Introduction

The utilization of aluminium alloys is experiencing significant growth in the realm of
structural engineering applications, particularly in the context of long-span roof systems,
movable bridges, and prefabricated frameworks. Aluminium possesses highly enticing
characteristics, including a remarkable strength-to-weight ratio, exceptional resistance
against corrosion, flexibility in accommodating varied cross-section shapes, an advanta-
geous life-cycle cost, and expedient fabrication processes [1–3].

Aluminium alloys also exhibit structural disadvantages: high initial cost, high de-
formability resulting from an elastic modulus one-third that of steel, increased local and
global stability issues, high sensitivity to thermal variations, and reduced strength due to
heat-treated zones in welded areas. Similar to all metallic elements, aluminium alloy ele-
ments are sensitive to instability phenomena. One of the main stability problems for metal
alloys is local buckling, which impacts the ultimate behavior of compressed portions of the
cross-section and subsequently influences the ultimate resistance and plastic deformation
capacity. This factor becomes even more significant for aluminium alloys given their lower
elastic modulus. Local buckling is influenced by the slenderness of the cross-section, with
buckling occurring in either the elastic or plastic range, depending on the ratio of width
to thickness of the plate elements composing the member section. The European code,
EN 1999-1-1 [4], establishes a classification method for cross-sections that considers the
slenderness of the individual plate elements and the conventional elastic limit, f0.2.

The current approaches for metal members are based on an elastic-perfectly plastic
analysis performed on an effective cross-section. However, this approach [5] neglects
two main aspects: (1) the real behaviour of the material, which is relevant for aluminium
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members because of their continuous strain-hardening behaviour [3]; and (2) the interaction
between the plate elements constituting the cross-sections.

Many research studies have been dedicated to enhancing the accuracy in forecasting
the ultimate response of aluminium alloy members. Numerous stub column tests have
been performed on different cross-sectional shapes in order to acquire additional insights
into the impact of local buckling phenomena on the ultimate resistance. Faella et al. [6]
examined sections of a square hollow section (SHS) and a rectangular hollow section
(RHS), providing an empirical formulation for computing the strain that corresponds to the
complete development of local buckling. Su et al. [7] undertook an exhaustive experimental
campaign on SHS and RHS sections fabricated from aluminium alloys 6061-T6 and 6063-T5,
both with and without internal stiffeners.

In the study of Moen et al. [8], they investigated the behavior of aluminium alloy
beams subjected to both uniform and non-uniform bending. They performed three- and
four-point bending tests on beams made of aluminium alloys 6082-T4, 6082-T6, and 7108-T7.
They found that the rotation capacity of these beams is influenced by the strain-hardening
characteristics of the aluminium material and the magnitude of the moment gradient.
In a more recent study, Wang et al. [9] performed experiments on extruded I-shaped
beams made of 6000 series aluminium alloy. These beams were tested both with and
without intermediate stiffeners under concentrated loads. Furthermore, Piluso et al. [10],
Montuori et al. [11,12], and Pisapia [13,14] have proposed mathematical equations to calcu-
late the ultimate flexural strength and rotation capacity of box-shaped (SHS and RHS) and
I-shaped aluminium beams.

Following the research provided by Nastri et al. [15,16], a variation of the effective
thickness method (ETM), which is currently utilized by Eurocode 9 [4], has been formulated
to calculate the ultimate resistance of aluminium beams. This revised edition of ETM is
currently presented in Annex L of the revised version of Eurocode 9 [17].

In recent years, there has been a significant advancement in the understanding of
the inelastic response of aluminium compression members. However, there still exists
a significant deficiency in experimental data compared to steel members. In order to
address this issue, the University of Salerno conducted eight stub column tests on square
hollow section (SHS) members. These members were made of 6060 aluminium alloys
and varied in terms of their width-to-thickness ratios. Subsequently, the experimental
results were obtained in terms of maximum compression resistance and maximum strains.
Then, two accurate methodologies were presented: (1) a theoretical procedure based on the
deformation theory of plasticity (J2) [18–20]; and (2) an extension of the effective thickness
method (ETM) provided by Annex L of the Eurocode 9 draft [4]. These approaches consider
the local buckling effects in the elastic-plastic range, the strain-hardening behaviour of
aluminium material, and the interaction between the plate elements constituting the cross-
section. Finally, the experimental results presented in this work with those provided
in [6,7] have been compared with the theoretical results obtained by means of the previous
methodologies and current design provisions.

2. Experimental Campaign
2.1. Geometric and Mechanical Properties

The aluminium members analysed in the current experimental tests are extruded
beams made of EN-AW 6060 T66 with the SHS section.

Four types of section are considered for both stub and bending tests, characterized
by a nominal width of 40, 60, 80, or 100 mm and with the same nominal thickness equal
to 2 mm. According to Figure 1, the nominal and measured geometrical properties of
specimens are reported in Table 1.
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Figure 1. Geometric scheme of box section. 

Table 1. Nominal and measured geometric properties of tested specimens. 

Section 
𝑩𝟏.𝐧𝐨𝐦 
[mm] 

𝑩𝟐.𝐧𝐨𝐦 
[mm] 

𝒕𝐧𝐨𝐦 
[mm] 

𝑨𝐧𝐨𝐦 
[mm2] 𝑩𝟏 [mm] 𝑩𝟐 [mm] 𝒕𝟏 [mm] 𝒕𝟐 [mm] 𝒕𝟑 [mm] 𝒕𝟒 [mm] 𝑨 [mm2] 

SHS40 40.00 40.00 2.00 304 40.18 40.11 1.99 2.20 2.09 2.00 315.26 
SHS60 60.00 60.00 2.00 464 60.31 60.40 2.00 2.16 2.00 2.09 480.92 
SHS80 80.00 80.00 2.00 624 80.17 80.06 2.00 1.98 1.90 1.89 607.40 

SHS100 100.00 100.00 2.00 784 100.30 100.30 2.24 2.04 2.12 2.37 860.40 

Standard tensile tests have been performed on specimens cut from each type of sec-
tion according to UNI-EN-ISO 6892-1-1 [21]. In particular, the specimens P  were cut from 
each plate constituting the section according to the shape shown in Figure 2. The geomet-
ric dimensions are reported in Table 2.  
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Table 2. Geometric properties of tensile coupons. 

Section 
𝑺𝟎 

[mm] 
𝑺 

[mm] 
𝑳𝒄 

[mm] 
𝑳𝒔 

[mm] 
𝑳𝒕𝒐𝒕 

[mm] 
SHS40 15 30 80 90 275 
SHS60 15 30 80 90 275 
SHS80 20 40 100 100 320 

SHS100 20 40 100 100 320 

The monotonic tests have been performed under displacement control according to 
Method A2 as described in UNI-EN-ISO 6892-1-1 [21]. The experimental results for each 
plate constituting each tested section are reported in Table 3. In particular, the following 
measured properties are provided: 
• The experimental Young’s modulus 𝐸  
• The stress at a residual strain of 0.1% [𝑓 . ] 
• The stress at a residual strain of 0.2% [𝑓 . ] 

Figure 1. Geometric scheme of box section.

Table 1. Nominal and measured geometric properties of tested specimens.

Section B1.nom
[mm]

B2.nom
[mm]

tnom
[mm]

Anom
[mm2]

B1
[mm]

B2
[mm] t1 [mm] t2 [mm] t3 [mm] t4 [mm] A

[mm2]

SHS40 40.00 40.00 2.00 304 40.18 40.11 1.99 2.20 2.09 2.00 315.26

SHS60 60.00 60.00 2.00 464 60.31 60.40 2.00 2.16 2.00 2.09 480.92

SHS80 80.00 80.00 2.00 624 80.17 80.06 2.00 1.98 1.90 1.89 607.40

SHS100 100.00 100.00 2.00 784 100.30 100.30 2.24 2.04 2.12 2.37 860.40

Standard tensile tests have been performed on specimens cut from each type of section
according to UNI-EN-ISO 6892-1-1 [21]. In particular, the specimens PI were cut from each
plate constituting the section according to the shape shown in Figure 2. The geometric
dimensions are reported in Table 2.
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Table 2. Geometric properties of tensile coupons.

Section S0
[mm]

S
[mm]

Lc
[mm]

Ls
[mm]

Ltot
[mm]

SHS40 15 30 80 90 275

SHS60 15 30 80 90 275

SHS80 20 40 100 100 320

SHS100 20 40 100 100 320

The monotonic tests have been performed under displacement control according to
Method A2 as described in UNI-EN-ISO 6892-1-1 [21]. The experimental results for each
plate constituting each tested section are reported in Table 3. In particular, the following
measured properties are provided:
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• The experimental Young’s modulus
[
Eexp

]
• The stress at a residual strain of 0.1% [ f0.1]
• The stress at a residual strain of 0.2% [ f0.2]
• The engineering maximum stress [ fu]
• The engineering strain corresponding to the maximum stress [εu]
• The ultimate strain [εr]
• The Ramberg–Osgood coefficient [n] given by:

Table 3. Mechanical properties of tested tensile coupons.

Specimen Eexp
[mPa]

f0.1
[mPa]

f0.2
[mPa]

fu
[mPa]

εu
[-]

εr
[-]

ni
[-]

np
[-]

SHS 40

P1 73054 171.00 181.75 207.85 0.055 0.075 11.34 22.96

P2 75767 176.70 182.59 203.03 0.046 0.062 21.14 28.22

P3 71465 160.83 174.03 202.17 0.053 0.074 8.78 20.35

P4 66793 154.92 166.92 192.36 0.057 0.072 9.29 23.53

SHS 60

P1 65669 210.11 227.32 252.65 0.054 0.064 8.80 30.38

P2 61254 207.09 215.00 238.83 0.065 0.088 18.49 33.09

P3 65277 224.68 231.39 252.22 0.065 0.082 23.55 38.62

P4 72674 213.20 226.59 253.58 0.069 0.095 11.38 31.90

SHS 80

P1 69665 210.82 224.17 246.02 0.039 0.064 11.29 35.70

P2 75975 199.00 211.00 253.41 0.061 0.068 11.84 18.66

P3 65174 226.46 236.92 255.41 0.042 0.050 15.35 39.65

P4 63341 217.45 231.12 253.71 0.070 0.091 11.37 38.07

SHS 100

P1 71564 168.65 174.75 199.10 0.060 0.088 19.51 26.39

P2 70044 165.38 175.61 201.80 0.060 0.098 11.55 24.83

P3 66906 140.02 152.86 187.38 0.080 0.103 7.90 17.64

P4 69317 155.32 169.36 195.79 0.060 0.085 8.00 22.51

ni =
ln2

ln
(

f0.2
f0.1

) np =
ln(0.002/ε0.u)

ln
(

f0.2
fu

) (1)

ni and np are, respectively, the R-O coefficients in the inelastic and plastic region
and ε0.u is the residual strain corresponding to the maximum stress fu, it is equal to
ε0.u = εu − 0.002. The Ramberg–Osgood law is given by:

ε =
σ

E
+ 0.002

(
σ

f0.2

)n
(2)

2.2. Stub Column Tests

Stub column tests have been carried out to evaluate the maximum load Nu.exp and
corresponding displacement δu.exp of SHS aluminium members. The test setup is shown
in Figure 3. The compression tests were provided by means of a Schenck Hydropuls
S56 testing machine (maximum load 630 kN, piston stroke ± 125 mm). For each mem-
ber, a minimum of two stub tests were tested. The loading protocol is based on the
application of two different test speeds, equal for each specimen: an initial low speed vi
equal to 0.42 mm/min up to post-elastic level and, successively, a final speed v f equal to
1.20 mm/min. The speed change was set for each specimen according to the theoretical
yield displacement δ0.2.
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The axial displacements have been measured by three inductive transducers (LDT).
The mean value of the three measures was considered. Almost all the specimens have
failed due to pure local buckling, except the tests referring to SHS100 (test a, test b) and
SHS80 (test a) where the instability phenomenon occurred, preliminarily, of a single plate
due to the geometrical imperfections of sections and as can also be depicted by observing
the shapes of N − δ curves provided in Figure 4. The results are shown in Table 4, where

the specimen height a, the ultimate resistance Nu.exp its non-dimensional value
−
Nu, the

maximum displacement δu.exp, and its non-dimensional value
−
δu are provided. The non-

dimensional values are expressed as:

−
Nu =

Nu.exp

A· f0.2

−
δu =

δu.exp

δ0.2
(3)

where A represents the section area of each section, while δ0.2 corresponds to the displace-
ment according to the conventional strain ε0 = f0.2/E. Consequently, considering that

δ = ε·a,
−
δu coincides with the normalised buckling strain

−
ε u:

−
ε u =

εu

ε0
(4)

Table 4. Results of stub column tests.

Specimen Test a
[mm]

Nu.exp
[kN]

−
Nu
[-]

δu.exp
[mm]

−
δu(
−
εu)

[-]

SHS40
a 120.05 58.30 1.05 0.87 2.96
b 120.12 57.53 1.04 0.86 2.92
c 130.43 55.55 1.01 0.51 1.60

SHS60
a 181.10 92.26 0.85 0.59 0.96
b 180.80 85.62 0.79 0.61 0.99

SHS80
a 240.12 79.50 0.58 0.60 0.76
b 240.32 87.18 0.63 0.64 0.81

SHS100
a 300.10 90.22 0.62 0.62 0.58
b 299.00 80.85 0.55 0.61 0.75
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3. New Theoretical Procedures
3.1. Theoretical Approach Based on J2 Theory

Recently, a new theoretical approach has been developed to evaluate the ultimate
compression load of aluminium members under uniform compression by considering
the local buckling effects in the elastic-plastic region. This procedure is based on the J2
deformation theory of plasticity. Starting from the J2 theory [18], the plate stability equation
is derived in the elastic-plastic range by including the variability of the Poisson’s ratio
depending on the stress level as follows [20]:

C1
∂4w
∂x4 + 2C3

∂4w
∂x2∂y2 + C5

∂4w
∂y4 = − N

Ds

∂2w
∂x2 (5)

where Ds represents the secant flexural stiffness of the plate:

Ds =
Est3

12(1− ν2)
(6)

and the coefficients Ci accounts for the nonlinear behaviour of the material:

C1 = 1− (2−ν)2

4H(1−ν2)

(
1− Et

Es

)
C5 = 1− (1−2ν)2

4H(1−ν2)

(
1− Et

Es

)
C3 = 1 + (2−ν)(1−2ν)

4H(1−ν2)

(
1− Et

Es

)
H = 1 + (1−2ν)2

4(1−ν2)

(
1− Et

Es

) (7)
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where Es and Et indicates the secant and tangent modulus, respectively, and ν is the
Poisson’s ratio, and according to Gerard and Wildhorn [22], it can be expressed as:

ν = νp −
(
νp − νe

)Es

E
=

1
2
−
(

1
2
− νe

)
Es

E
(8)

The solution of Equation (5) can be defined in the Levy’s form, as reported in [18]. The final
solution is expressed as:

w(x, y) = (A1coshαy + A2sinhαy + A3cosβy + A4sinβy)sinkx (9)

where:

α =

√√√√C3k2

C5
+

√(
C3

C5

)2
k4 − k2

(
k2 C1

C5
− N

DsC5

)
β =

√√√√−C3k2

C5
+

√(
C3

C5

)2
k4 − k2

(
k2 C1

C5
− N

DsC5

)
(10)

In order to investigate the interactive local buckling of box-shaped sections, the Equation (9)
can be applied to the plate elements constituting the member sections. In particular,
according to Figure 5, eight integration constants have to be derived to get:

Plate 1 :
(

A(1)
1 coshα1y1 + A(1)

2 sinhα1y1 + A(1)
3 cosβ1y1 + A(1)

4 sinβ1y1

)
sinkx

Plate 2 :
(

A(2)
1 coshα2y2 + A(2)

2 sinhα2y2 + A(2)
3 cosβ2y2 + A(2)

4 sinβ2y2

)
sinkx

(11)

The following boundary conditions can be applied:

(1) ∂w1
∂y1

∣∣∣
y1=0

= 0 (2)R∗x.1

∣∣
y1=0 = 0

(3) ∂w2
∂y2

∣∣∣
y2=0

= 0 (4)R∗x.2|y2=0 = 0

(5)w1|y1=b1
= 0 (6)w2|y2=−b2

(7) ∂w1
∂y1

∣∣∣
y1=b1

= ∂w2
∂y2

∣∣∣
y2=−b2

(8)My
∣∣
y1=b1

= My
∣∣
y2=−b2

(12)

where R∗x.i are the equivalent shear actions while My represents the bending moments.
By substituting Equation (9) into the relations provided in Equation (12), a system of
four equations is obtained and it can be expressed in matrix form:

coshα1b1 cosβ1b1 0 0
0 0 coshα2b2 cosβ2b2

α1sinhα1b1 −β1sinβ1b1 α2sinhα2b2 −β2sinβ2b2

D(1)
s α2

1coshα1b1 −D(1)
s β2

1cosβ1b1 −D(2)
s α2

2coshα2b2 D(2)
s β

2
2cosβ2b2




A(1)
1

A(1)
3

A(2)
1

A(2)
3

 =


0
0
0
0

 (13)

A trivial solution A = 0 can be neglected. A non-trivial result is obtained by imposing the
determinant of the coefficient matrix is equal to zero. The buckling stress corresponding to
the solution of Equation (13) can be determined by means of a numerical procedure that
works to increase the axial stress values in the plate elements until satisfying Equation (13).

3.2. Extension of Effective Thickness Method (ETM)

In prEN1999-1-1 Annex L [17], an extension of the effective thickness method (ETM)
that incorporates buckling in the elastic-plastic range is introduced.

This approach is aimed at enhancing the accuracy in assessing the nonlinear response
of aluminium structural elements subjected to uniform compression and non-uniform
bending. It represents a more advanced version of the conventional effective thickness
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method typically used for considering the effects of elastic local buckling in class 4 sections.
The refined ETM relies on a strain-dependent analysis of the effective thickness that ac-
counts for local buckling in the elastic-plastic region and the interaction between the plate
components forming the section of the member.
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The slenderness parameter of the plate elements constituting the section is evaluated
as a function of the strain level ε [18] as:

β

ε0
= 17.54η

b
t

√
ε

µζ
(14)

In accordance with Eurocode 9, β denotes the slenderness parameter, which is a function
of the ratio between the width b and thickness t of the plate. ε0 is a non-dimensional
parameter determined by the yield strength of the aluminium material and it is equal
to
√

250/ f0.2. On the other hand, k represents the buckling factor, which considers the
edge-restraining conditions and the stress distribution along the loaded edges. The factors
η and µ are computed as:

η =
2√
k

µ =
ξE
Es

1
1− ν2 (15)

ζ is a correction factor accounting for interactive buckling and it is equal to ζ = k/k0 where
the buckling factor k accounts for interactive buckling and k0 is a buckling factor for an
isolated plate element. In the case of plate elements, acting as a flange, connected to webs
on both edges:

ζ = 1.75− 0.45b2/b1

0.15 + b2/b1
− 0.02275(b2/b1)

3 ≥ 1 (16)

here according to, b2 = B2 − t f and b1 = B1 − tw. Equation (16) is derived from the
expression of k given by BS5950-5 [23] considering that, in this case, k0 = 4.

The coefficient ξ accounts for the nonlinear behaviour of the material, i.e., local buck-
ling in the elastic-plastic range, according to the following relation:

ξ =
Es

E

[
n− 8

8
+

8
n

√
Et

Es

]
(17)



Eng. Proc. 2023, 43, 39 9 of 14

The application of the effective thickness method requires a procedure under dis-
placement control. For increasing values of the axial displacement δ, the corresponding
average strain ε = δ/a is determined. Therefore, the slenderness parameter is given by
Equation (14) and it increases for increasing values of ε. Then, the effective thickness
can be obtained for all the plate elements and the effective cross-section area Ae f f can be
computed. The axial force corresponding to δ is computed as N = σAe f f where σ is the
stress level corresponding to ε, evaluated according to the Ramberg–Osgood model. So,
the axial force-displacement curve can be provided. The maximum value of this curve is
the ultimate buckling load.

4. Comparison with Available Experimental Results

A comparison between the experimental results with those derived by European
provisions and theoretical procedures has been provided. In particular, according to
EN1999-1-1 [4], the following relation is used to predict the maximum compression resistance:

Nu.EC9 =
f0.2 Ae f f

γM1
(18)

Obviously, in the sections belonging to first, second, or third class, Ae f f coincides with
the whole cross-section area, while in the case of the fourth class, Ae f f is reduced due to
local buckling effects. The safety factor γM1 is assumed equal to 1.00.

In addition to the experimental data provided in Section 2, the comparison has
been performed by considering the experimental results provided by Faella et al. [6] and
Su et al. [7]. A summary of the comparison between the experimental values with theoretic
values obtained by EN1999-1-1 and the theoretical procedures is reported in Table 5.

Table 5. Comparison between experimental and theoretical values.

Section Design Code
EN 1999-1-1

Deformation Theoretical
Procedure (DTP)

Effective Thickness
Method (ETM)

SHS, RHS Nu.EC9
Nu.exp

Nu.DTP
Nu.exp

−
ε u.DTP
−
ε u.exp

Nu.ETM
Nu.exp

−
ε u.ETM
−
ε u.exp

Mean [µ] 0.93 1.02 0.99 0.96 0.81
Standard deviation [σ] 0.09 0.09 0.18 0.07 0.22

It is immediately observed that in the prediction of the maximum resistance the
accuracy is very high. In fact, the mean value of the Nu.DTP/Nu.exp ratios is equal to 1.02.
Moreover, an important advantage of the new methodologies is related to the possibility to
estimate the non-dimensional strains corresponding to the maximum compression load.

Also, regarding the prediction of non-dimensional strains
−
ε u, the values provided by the

DTP procedure are very close to the experimental values. In fact, the mean value of the
−
ε u.DTP/

−
ε u.exp ratios is equal to 0.99 with a standard deviation of 0.18. However, the great

advantage of the ETM procedure is that it allows for the determination of a continuous
curve between the axial load and the non-dimensional strain by also including the softening
branch due to the post-buckling behaviour. This phenomenon occurs when the gradual
decrease in the effective thickness is no longer counterbalanced by the corresponding
increase in stress caused by the rise in strain magnitude.

For comprehensive references, all numerical values can be found in Appendix A.

5. Conclusions

In this study, the local buckling phenomenon of aluminium members subjected to
uniform compression was analyzed within the elastic-plastic region. Specifically, new
experimental tests were conducted on square hollow sections (SHS) made of 6060 alu-
minium alloys. Subsequently, novel theoretical approaches were presented. The first one is
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based on the application of the J2 deformation theory of plasticity. The second method is
an extension of the effective thickness method (ETM) outlined in Annex L of prEN1999-1-1.
To assess the accuracy of these new methodologies, a comparison was made between the
experimental results of the stub column tests and the values obtained using the European
provisions and the new methods. The results revealed that the European rules underesti-
mate the actual behavior of aluminium members subjected to uniform compression. On
the other hand, the new methods demonstrate a high level of accuracy. Specifically, both
the fully theoretical approach and the effective thickness method were investigated by
comparing the predicted buckling resistance with the results from available experimental
tests. The obtained outcomes demonstrated that the average ratio of Nu.th/Nu.exp between
the theoretical and experimental values of the buckling resistance is 1.02, with a standard
deviation of 0.09. When applying the effective thickness method, the same ratio has an
average value of 0.96 with a standard deviation of 0.07. Consequently, despite its simplicity,
the effective thickness method provides satisfactory results for code provisions. Finally,
these methodologies also offer the advantage of estimating the non-dimensional strains
corresponding to the maximum compression loads.
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Appendix A

Table A1. Comparison between the theoretical ultimate loads with the experimental results provided
by Faella et al. [6].

Specimen Nu.exp
[kN]

Nu.EC9
[kN]

Nu.DTP
[kN]

Nu.ETM
[kN] Specimen Nu.exp

[kN]
Nu.EC9
[kN]

Nu.DTP
[kN]

Nu.ETM
[kN]

SHS1
A 30.6 21.44 25.47 25.05 RHS8 B 212 198.11 209.29 197.37

B 29.7 21.44 25.47 25.05
RHS9

A 222.6 227.86 232.03 212.50

SHS2
A 158.4 131.57 155.94 152.98 B 224.9 227.86 232.03 212.50

B 160.8 131.57 155.95 152.98
RHS10

A 271.2 279.03 296.30 250.31

SHS3
A 132.4 130.43 139.00 136.29 B 255.6 279.03 296.30 250.31

B 131.3 130.43 139.00 136.29
RHS11

A 290.8 275.92 312.79 236.38

SHS4
A 186.6 159.29 174.22 171.79 B 261.2 250.83 312.79 236.38

B 180.9 159.29 174.22 171.79
RHS12

A 313.2 250.83 336.21 260.00

SHS5
A 213.8 191.34 208.81 203.64 B 315.6 284.01 335.99 265.00

B 208.7 191.34 208.81 203.64
RHS13

A 248.1 243.08 248.44 248.00

SHS6
A 264.4 251.49 265.75 259.65 B 248.2 243.08 248.44 228.33

B 263.8 251.49 265.75 259.65

RHS14

A 85.1 85.90 89.02 80.50

SHS7
A 300.2 316.13 320.23 305.19 B 79.1 85.90 89.02 80.50

B 304.8 316.13 320.25 305.19 C 79.7 85.90 89.02 80.50
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Table A1. Cont.

Specimen Nu.exp
[kN]

Nu.EC9
[kN]

Nu.DTP
[kN]

Nu.ETM
[kN] Specimen Nu.exp

[kN]
Nu.EC9
[kN]

Nu.DTP
[kN]

Nu.ETM
[kN]

SHS8
A 82.7 83.20 86.49 80.53

RHS15

A 185.7 166.53 176.42 168.19

B 83.3 83.20 86.49 80.53 B 190.7 166.53 176.42 168.19

SHS9
A 84.7 81.03 107.85 92.33 C 185.2 166.53 176.41 168.19

B 84.6 81.03 107.85 92.33
RHS16

A 92.5 90.14 99.49 83.03

SHS10
A 728.5 664.13 706.27 686.75 B 92.8 90.14 99.49 83.03

B 731.5 664.13 706.27 686.75
RHS17

A 89.4 81.80 87.67 78.14

SHS11
A 605.5 540.06 577.65 509.27 B 88.6 81.80 87.67 78.14

B 592.5 540.06 577.55 509.27
RHS18

A 92.7 94.92 116.27 92.35

SHS12
A 626.5 605.82 721.78 626.40 B 89.4 87.00 115.72 92.35

B 643.5 605.82 721.77 626.40
RHS19

A 137.7 132.00 166.64 143.78

RHS1
A 78.7 62.99 71.77 70.00 B 139.6 132.00 166.78 143.78

B 77.5 62.99 71.77 70.00
RHS20

A 513.5 529.34 535.33 474.27

RHS2
A 124.3 99.87 111.39 109.26 B 506.5 529.34 535.33 474.27

B 122.4 99.87 111.36 109.26
RHS21

A 115.3 117.40 124.58 121.58

RHS3
A 134.8 106.32 118.72 116.00 B 116.5 117.40 124.58 121.58

B 136.8 106.32 118.72 115.50
RHS22

A 493 525.32 571.11 496.62

RHS4
A 109.8 98.12 109.19 104.19 B 497 525.32 571.11 496.62

B 109.2 98.12 109.22 104.19
RHS23

A 621.5 631.77 708.55 611.11

RHS5
A 108.5 101.89 105.45 103.46 B 612 631.77 708.55 611.11

B 109.1 101.24 104.78 103.46
RHS24

A 2939.4 2743.00 3016.10 2929.40

RHS6
A 122.4 112.58 122.53 115.24 B 2934 2743.00 3016.12 2929.40

B 122.9 112.58 122.47 115.24
RHS25

A 669 664.00 748.64 714.22

RHS7
A 120.6 113.90 116.88 108.88 B 670.5 672.07 748.64 714.22

B 118.7 113.90 116.87 108.88
RHS26

A 865 771.97 802.70 780.13

RHS8 A 212 198.11 209.30 197.37 B 852 771.97 802.70 780.13

Table A2. Comparison between the theoretical values with the experimental results provided in
Section 2 and by Su et al. [7].

Specimen Nu.exp
[kN]

Nu.EC9
[kN]

Nu.DTP
[kN]

Nu.ETM
[kN] Specimen Nu.exp

[kN]
Nu.EC9
[kN]

Nu.DTP
[kN]

Nu.ETM
[kN]

SHS40

A 58.3 50.38 56.82 56.21
H64 × 64 × 3

A 164.2 160.68 170.16 148.13

B 57.53 50.38 56.82 56.09 B 165.4 162.86 173.28 150.54

C 55.55 50.38 55.00 56.09
H70 × 55 × 4.2

A 196.2 183.69 200.46 191.31

SHS60
A 92.26 89.62 94.38 87.65 B 196.9 184.11 200.98 191.74

B 85.62 89.62 94.38 87.65 H95 × 50 × 10.5 A 626.2 587.32 613.59 722.86

SHS80
A 79.5 88.11 85.12 81.21 H120 × 70 × 10.5 A 862.5 793.77 840.28 924.23

B 87.18 88.11 85.12 81.21 H120 × 120 × 9 A 981.5 890.83 882.53 987.83

SHS100
A 90.22 78.70 96.12 89.86 N95 × 50 × 10.5 A 609.8 459.83 572.61 574.76

B 80.85 78.70 96.12 89.86 N120 × 70 × 10.5 A 736.9 490.38 684.69 583.69

N120 × 120 × 9 A 811.1 717.36 769.20 812.48
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Table A3. Comparison between the non-dimensional strains with the experimental results provided
by Faella et al. [6].

Specimen
−
εu.exp

[-]

−
εu.DTP

[-]

−
εu.ETM

[-]
Specimen

−
εu.exp

[-]

−
εu.DTP

[-]

−
εu.ETM

[-]

SHS1
A 30.04 31.00 21.73 RHS8 B 2.88 3.52 3.10

B 32.51 30.95 21.73
RHS9

A 1.95 2.49 0.98

SHS2
A 18.36 17.80 12.69 B 1.88 2.49 0.98

B 21.07 17.81 12.69
RHS10

A 1.60 1.82 1.06

SHS3
A 4.94 4.73 3.12 B 1.35 1.20 1.06

B 5.07 4.73 3.12
RHS11

A 1.09 1.16 1.14

SHS4
A 11.65 10.92 7.46 B 1.09 1.16 1.14

B 13.26 10.92 7.46
RHS12

A 1.04 0.96 0.99

SHS5
A 6.88 5.93 3.95 B 0.99 0.96 0.99

B 7.89 5.93 3.95
RHS13

A 1.95 2.33 1.06

SHS6
A 3.52 4.30 2.77 B 1.88 2.00 1.06

B 4.13 4.30 2.77

RHS14

A 1.24 1.27 1.05

SHS7
A 1.43 1.99 1.23 B 1.26 1.20 1.05

B 1.47 1.99 1.23 C 1.15 1.58 1.05

SHS8
A 1.90 2.49 1.60

RHS15

A 4.64 4.50 3.21

B 1.71 2.49 1.60 B 4.16 4.50 3.21

SHS9
A 0.81 0.70 0.91 C 5.21 4.50 3.21

B 0.76 0.70 0.91
RHS16

A 1.12 0.92 0.95

SHS10
A 2.91 3.39 2.13 B 1.08 0.92 0.95

B 3.26 3.39 2.13
RHS17

A 1.24 1.39 1.03

SHS11
A 1.56 1.47 1.17 B 1.28 1.39 1.03

B 1.29 1.47 1.17
RHS18

A 0.98 0.79 0.95

SHS12
A 1.13 1.19 1.07 B 1.02 0.78 0.95

B 1.06 1.19 1.07
RHS19

A 0.83 0.85 0.99

RHS1
A 19.41 13.64 11.98 B 0.83 0.85 0.99

B 19.39 13.64 11.98
RHS20

A 0.89 0.83 0.80

RHS2
A 24.93 21.69 18.76 B 0.93 0.83 0.80

B 24.54 21.56 18.76
RHS21

A 2.77 2.00 2.79

RHS3
A 15.10 13.21 10.11 B 3.26 3.00 2.79

B 15.12 13.21 10.14
RHS22

A 0.97 0.81 0.95

RHS4
A 6.70 6.36 4.20 B 0.92 0.81 0.95

B 6.45 6.39 4.20
RHS23

A 1.00 1.00 0.96

RHS5
A 3.75 4.34 2.33 B 0.99 0.98 0.96

B 3.28 4.36 2.33
RHS24

A 2.83 2.83 1.01

RHS6
A 3.83 4.62 3.05 B 2.85 2.70 1.01

B 4.15 4.59 3.05
RHS25

A 1.37 1.37 1.26

RHS7
A 1.94 1.50 1.13 B 1.39 1.37 1.26

B 1.63 1.50 1.13
RHS26

A 1.95 1.39 1.13

RHS8 A 2.90 3.52 3.10 B 1.92 1.39 1.13
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Table A4. Comparison between the non-dimensional strains with the experimental results provided
in Section 2 and by Su et al. [7].

Specimen
−
εu.exp

[-]

−
εu.DTP

[-]

−
εu.ETM

[-]
Specimen

−
εu.exp

[-]

−
εu.DTP

[-]

−
εu.ETM

[-]

SHS40

A 2.94 2.96 2.05
H64 × 64 × 3

A 2.14 2.18 1.14

B 2.90 2.92 2.05 B 2.20 2.25 1.15

C 1.60 1.60 2.05
H70 × 55 × 4.2

A 5.67 5.69 2.69

SHS60
A 0.97 0.96 0.93 B 5.70 5.72 2.69

B 0.99 0.99 0.93 H95 × 50 × 10.5 A 2.07 2.05 2.43

SHS80
A 1.38 0.76 0.84 H120 × 70 × 10.5 A 2.17 2.14 2.60

B 0.80 0.81 0.84 H120 × 120 × 9 A 1.61 1.50 2.00

SHS100
A 1.08 0.58 0.83 N95 × 50 × 10.5 A 8.24 8.16 8.51

B 1.41 0.75 0.83 N120 × 70 × 10.5 A 22.11 22.00 21.70

N120 × 120 × 9 A 2.56 2.50 3.47
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