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Abstract: This article investigates the influence of planet mounting position on axle loads in double
planet planetary gear trains. The study includes basic information about the type of geartrain used,
theoretical data, finite element analysis simulations, and empirical experiments to provide more
detailed data on the impact of planet pin position on bearing loads in different scenarios. A test
model with six different setups is designed for the studies. Finite element simulations were then
conducted to examine the model and to give more comprehensive information on the effect of pin
location. Empirical experiments were conducted on a test rig to verify the theoretical and simulation
results. The results indicate that the position of the planet pins has an impact on the distribution of
load between the bearings of the outer and inner planets of the gear train. This study aims to provide
more insights into the design and optimization of planetary gear trains when evaluating the loads on
the bearings of the planet gears.

Keywords: planetary gear train; double planet gear train; positive ratio planetary gear train

1. Introduction

Planetary gears are a highly versatile and efficient gear system that has become
critical in many industrial applications, especially in the transport and automotive industry,
electricity generation, etc. They are valued for their ability to handle high torque loads
and transmit power in a compact and lightweight design. As well as provide multiple
gear ratios in a limited space allowing for improved performance and increased efficiency.
Often used in hybrid and electric vehicles to combine the power of electric motors and
internal combustion engines, in the gearbox system of wind turbines and in transmissions
and differential systems to transmit power.

1.1. Comparison between Positive and Negative 2k-H Planetary Gear Train

The double-planet planetary gear train is a planetary gear system with pairs of planet
gears mounted on a common carrier. The inner planet meshes with the sun gear, the
outer planet meshes with the ring gear, and the pair of planet gears mesh. A common
abbreviation used for this kind of gear system is 2k-H positive [1,2], 2k-H type D [3] or
AAI [4] gear train. A comparison between the double planet planetary gear train and the
most widely recognisable planetary gear trains, the 2k-H, AI can be seen in Figure 1.

The use of a second row of planets leads to a variety of consequences. Most notably,
the direction of rotation of the ring gear is reversed compared to the single row 2k-H
and the direction of rotation of the carrier Figure 2. This makes the internal gear ratio i0
positive—the carrier and the ring gear rotate in the same direction, which explains why
this gear type is referred to as a positive planetary gear train [1,2,4].
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Figure 1. Comparison between negative and positive 2k-H planetary gear train. 

 
Figure 2. Comparison of the kinematics of negative and positive 2k-H planetary gear train. 

Another notable difference between the two arrangements is the torque distribution. 
In the case of the negative 2k-H, the carrier is a summation shaft which can be described 
by the following equation: 

TH = −(Ts + TR), (1)

where TH is the torque of the carrier, TS torque of the sun gear and TR torque of the ring 
gear. In the case of the double planet positive gear train, the ring gear is the summation 
shaft, and the torque distribution is as follows: 

TR = −(Ts + TH); (2)

TR = TS × i0. (3)

This can also be expressed using the modified Wolf symbol [4]. The double line 
represents the summation shaft in Figure 3. 
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Another notable difference between the two arrangements is the torque distribution.
In the case of the negative 2k-H, the carrier is a summation shaft which can be described by
the following equation:

TH = −(Ts + TR), (1)

where TH is the torque of the carrier, TS torque of the sun gear and TR torque of the ring
gear. In the case of the double planet positive gear train, the ring gear is the summation
shaft, and the torque distribution is as follows:

TR = −(Ts + TH); (2)

TR = TS × i0. (3)

This can also be expressed using the modified Wolf symbol [4]. The double line
represents the summation shaft in Figure 3.
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Figure 3. Modified wolf symbol showing the differences in torque distribution between positive and 
negative 2k-H planetary gear train. 

A more detailed comparison between different planetary and power branching 
geartrain types can be found in [5]. 
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Planetary gear trains are far more complicated regarding stress calculation and load 

prediction than other gear systems. Spli ing the input power between several branching 
components—planets- enables high torque capacity in compact packages. On the other 
hand, in practice, ideal manufacturing accuracy and assembly are unachievable, which, 
combined with other factors, results in a difference in the load sharing of the planets. More 
on load sharing in double-planet planetary gear trains can be found in [6,7]. 

While most studies focus on load-sharing factors between the planets, an interesting 
phenomenon was observed during the tests with full planet engagement planetary 
geartrain described in [8]. There was a noticeable difference in loading not only between 
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showing elevated stress on the outer row. This led to the hypothesis that the load 
distribution might be affected by the location and angle relation between the planet axes. 
This study will examine this concept for the 2k-H + geartrain since its design is closest to 
the full planet engagement from [8]. 

The hypothesis will be tested in the following manner. 
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2. Experimental Evaluation 
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All studies will be based on the same model, redesigning the gear train used in [8]. 
Since all the components and measuring equipment are readily available. It comprises a 
module 2 sun gear 60 teeth with profile shift x = −0.417. Two planet gears with 24 teeth 
each. And different ring gears depending on the set-up. Six test scenarios are considered 
in the study with different angles between the planet axles, as shown in Figure 4. 
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A more detailed comparison between different planetary and power branching geartrain
types can be found in [5].

1.2. Load on Planet Axels

Planetary gear trains are far more complicated regarding stress calculation and load
prediction than other gear systems. Splitting the input power between several branching
components—planets- enables high torque capacity in compact packages. On the other
hand, in practice, ideal manufacturing accuracy and assembly are unachievable, which,
combined with other factors, results in a difference in the load sharing of the planets. More
on load sharing in double-planet planetary gear trains can be found in [6,7].

While most studies focus on load-sharing factors between the planets, an interesting
phenomenon was observed during the tests with full planet engagement planetary geartrain
described in [8]. There was a noticeable difference in loading not only between the pairs
but also between the outer and inner rows of planets, with a repeatable pattern showing
elevated stress on the outer row. This led to the hypothesis that the load distribution might
be affected by the location and angle relation between the planet axes. This study will
examine this concept for the 2k-H + geartrain since its design is closest to the full planet
engagement from [8].

The hypothesis will be tested in the following manner.

• FEA simulation.
• Empirical experiments with a test rig.

2. Experimental Evaluation
2.1. Load on Planet Axels

All studies will be based on the same model, redesigning the gear train used in [8].
Since all the components and measuring equipment are readily available. It comprises a
module 2 sun gear 60 teeth with profile shift x = −0.417. Two planet gears with 24 teeth
each. And different ring gears depending on the set-up. Six test scenarios are considered in
the study with different angles between the planet axles, as shown in Figure 4.
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with the dimensions and tolerances corresponding to the physical gears from the test rig. 
The planet gears are modelled together with the pins. The type of simulation is linear 
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 The ring gear is fixed; 
 Sun gear and planet gear pins have hinged fixtures with a degree of freedom—
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 Torque is applied to the sun gear. All studies are done with 50 Nm of torque with a 

direction as shown in Figure 5; 
 Material with properties corresponding to c45 steel used in the physical gears is used 

for the sun gear and planet gears. ABS plastic is used for the ring gears since the 
physical experiment is conducted with 3d printed ring gears from ABS plastic; 

 Equivalent stress is measured with a probe on the selected face of the pin where the 
strain gauges of the physical model would measure Figure 6. All other stresses in the 
models are ignored. 
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Figure 4. Diagram of the tested gear trains.

2.2. FEA Simulation

For CAD simulation, assemblies of all six scenarios were created. Gears are modelled
with the dimensions and tolerances corresponding to the physical gears from the test rig.
The planet gears are modelled together with the pins. The type of simulation is linear static
with the following conditions:

• The ring gear is fixed;
• Sun gear and planet gear pins have hinged fixtures with a degree of freedom—rotation

around the central axis;
• Torque is applied to the sun gear. All studies are done with 50 Nm of torque with a

direction as shown in Figure 5;
• Material with properties corresponding to c45 steel used in the physical gears is used

for the sun gear and planet gears. ABS plastic is used for the ring gears since the
physical experiment is conducted with 3d printed ring gears from ABS plastic;

• Equivalent stress is measured with a probe on the selected face of the pin where the
strain gauges of the physical model would measure Figure 6. All other stresses in the
models are ignored.
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is then converted to MPa values for bending with the methodology described in [8]. 
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2.3. Empirical Experiments

As mentioned before, the physical experiments are done with a redesigned version of
the test rig used in [8]. A special component with the locations of all pins is used in place
of the carrier. Sections of ring gears are 3D printed and used for different scenarios. The
experiments are static. A lever with calibrated weight is used to apply 50 Nm of torque to
the sun gear. The ring gear is fixed to achieve the same conditions shown in Figure 5. The
model of the test rig can be seen in Figure 7.
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Stress is measured via strain gauges mounted on planet pins (Figure 8). Four strain
gauges in each pin are mounted in a double half-bridge configuration [9]. Measured data is
then converted to MPa values for bending with the methodology described in [8].
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Figure 8. An actual pin with strain gauges from the test equipment.

3. Results

The results from the FEA simulations can be seen in Table 1.

Table 1. Stress results from the FEA simulation.

Angle 80◦ 90◦ 112.5◦ 135◦ 157.5◦ 180◦

Pi (MPa) 72.5 74.5 85 113 93 87.4
Po (MPa) 89 87.5 88.5 115 89 90

Pi describes the MPa value on the inner planet, while Po the value of the outer planet.
A slight difference in stress between the various positions is observed. The outermost
planet is more loaded with smaller angle values, and the inner is more loaded with higher
angle values. The Values shown are an average of 5 simulations for each scenario. A chart
representation of the results is depicted in Figure 9.
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The results from the physical experiments with the test rig are shown in Table 2.

Table 2. Stress results from the empirical experiment.

Angle 80◦ 90◦ 112.5◦ 135◦ 157.5◦ 180◦

Pi (MPa) 37 39.6 41.25 37.2 46.2 42.35
Po (MPa) 45.3 45.1 52.25 38.5 40.7 43
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A slightly more prominent difference can be observed in the physical tests. What
is also worth mentioning is that the stress values are significantly lower than the FEA
simulation with the same input torque. This can be accounted to several factors. First,
the FEA simulation assumes infinitely rigid fixtures, which differs significantly from the
physical model. The FEA simulation is linear [10], which means that the software assumes
a linear relationship between the stress and strain regardless of the material’s resultant
stress and yield point. Again, this differs from reality, especially with 3D-printed ABS
plastic. Some of the stresses and deformations are absorbed by other less stiff components
and materials of the test rig. There are clearances of manufacturing inaccuracies [11] and
uneven load distribution [12] in parts which the software doesn’t account for. And finally,
there is friction and efficiency loss in the test rig, which affects the magnitude of the input
torque. However, the pattern of load distribution has similarities with the FEA simulations.
A chart representation of the results can be seen in Figure 10.
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The following Figures 11–13 compare the results for each scenario from both CAD
and empirical experiments. Because of the differences in stress and force values, the data is
shown as a percentage ratio between loads of the planet pins—Pi for the inner planet and
Po for the outer planet.
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4. Conclusions

The results from both the CAD simulation and empirical experiments indicated that
the position of the planet pins has an impact on the distribution of load between the pins of
the outer and inner planets of the gear train. Despite the significant stress value differences
between the two types of experiments, the trend and percentage load ratio are very similar.
The empirical experiments show a slightly more uneven distribution, specifically on a
112.5-degree angle. Also, it can be noted that the stress increases in value with a larger
angle. This can be explained by the change in gear ratio when using a larger ring gear. Since
the torque distribution in 2k-H + (AAI)geartrain is as according to Equations (2) and (3)
and the input torque and shaft being the same for all experiments, the torque in the carrier
holding the planet axes, increases with the increase of the gear ratio i0.

In conclusion, the difference in loading between the inner and outer pins is insignifi-
cant, especially when compared to the full planet engagement planetary gear train, where
a more prominent difference between the planet pins is observed. It is worth noting that
both the CAD and empirical simulations are done in static conditions. A future experiment
in a dynamic state with the same ratio i0 but a different number of teeth in the planets can
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further clarify the topic. Ultimately it is up to the designer to consider the difference in
loading when calculating the bearings and other components of the gear train.
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