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Abstract: Flood modelling is essential for addressing a range of scientific and engineering challenges.
In recent years, the high computational demands of solving shallow water equations numerically
have led researchers to explore machine-learning-based emulators for predicting floods and flood
risk. Specifically, the proliferation of convolutional neural networks in solving different scientific
problems has encouraged researchers to investigate their applicability in flood modelling. Most of
these studies, however, have focused on specific locations or hydrological conditions, meaning that
their findings may not be directly applicable to other situations without additional data and further
training. We present here a U-Net model, a popular deep learning algorithm, which has the capacity
to approximate maximum flood depths across multiple return periods while maintaining catchment
generalizability. The model was trained using the outputs from a 2D hydraulic model (JFlow) to
predict maximum water depths for a set of rainfall return periods (20, 100 and 1000 years). The
pre-trained model was then applied to estimate depths in three unseen catchment areas. Our results
demonstrate that U-Net can be used to approximate water depths in previously unseen catchments
with significantly less computational time compared to the 2D model.

Keywords: rapid flood modelling; machine learning; deep learning; catchment generalization;
flood inundation

1. Introduction

The shallow water equations, derived from the Navier–Stokes equations, are com-
monly used to model hydrological processes and flood dynamics. Numerically solving
these governing equations offers a reliable method for describing the physical process
of water flow. However, applying such methods in large-scale applications can prove
challenging and time-consuming [1–3]. This often leads to a conflict between the necessity
for precise results and the practical feasibility of obtaining them [4]. The issue becomes
particularly important for larger domains with high spatial resolutions (i.e., small raster
grid sizes) [2].

Considerable research effort has been dedicated to enhancing the performance of
conventional numerical models. Strategies include simplifying the equations by disre-
garding the inertial and advection terms of the momentum equation [5], leveraging high-
performance computing facilities [6], and utilizing graphics processing units (GPUs) [7,8].
Alternatively, non-physically based models, such as the transition rules of the cellular
automata method [9], have been used to predict water depths over large areas. While
this non-physically based approach accelerates the hydrological calculations, its primary
drawback lies in its sensitivity to time steps and spatial resolutions [2], and an increase in
spatial resolution can potentially result in a tenfold increase in simulation time [9].

There is a need for innovative modelling approaches that can address the technical
challenges of generating actionable information while alleviating the computational load.
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One promising solution is to use machine learning (ML) models that can emulate the
outputs of the computationally expensive 2D hydrodynamic models. While ML techniques
for rainfall–runoff forecasting have been in use for a few decades, studies applying ML to
flood inundation modelling are more limited [3].

Recently, deep learning (DL), and more specifically convolutional neural networks
(CNNs), have been increasingly applied in data-driven flood modelling [3]. However, most
research has focused on creating models for specific drainage systems, which restricts the
applicability of such modelling approaches. For example, Kabir et al. [3] developed a CNN-
based fluvial flood inundation model tested in the downstream of the Eden catchment
(UK). Similarly, a Gaussian process-based neural network model was tested in the same
catchment area [10]. Guo et al. [1] applied an autoencoder-type model (a type of DL method
often used for image reconstruction/image-to-image translation) to predict the maximum
flood depths of an urban catchment.

In [11], do Lago et al. constructed a conditional generative adversarial network
(cGAN) and used both topographical features and rainfall data for flood predictions in an
urban catchment. They trained the cGAN model using data from multiple sub-catchments
and tested it on sub-catchments outside the training areas. The U-Net, a neural network
architecture widely used for image segmentation, has also been developed for predicting
maximum flood depths [12]. Recently, Guo et al. [2] used the U-Net model to estimate
flood depths for a 100-year storm event. In this study, the authors considered catchment
generalizability, meaning the model was tested in areas beyond the training datasets with
different boundary conditions. In [2], the authors demonstrated that only topographical
features can be used to predict maximum water depths. These studies indicate the potential
for further research in utilizing data-driven models that can be generalized to different
topographical inputs.

In this study, we describe the development of a new U-Net model that emphasizes
both spatial and temporal generalizability. In other words, our model can predict maximum
flood depths for design storms (synthetic storm events created based on historic data) of
multiple return periods while maintaining spatial transportability.

2. Method and Materials
2.1. Problem Statement

DL-based flood models need a substantial volume of flood data and high-quality
terrain features for training, as well as substantial efforts to create inputs of uniform
dimensionality, necessitating a systematic representation of river catchments of varying
sizes [2]. Yet it is often the case that there is insufficient historical flood data on a national
scale and high-resolution digital elevation models (DEMs) are not universally available, all
likely contributing to the paucity of DL studies in this area.

This study aims to address these challenges by developing a new DL-based model
capable of streamlining the prediction process at the catchment scale. We make use of
high-resolution DEM data to extract terrain features and introduce a systematic data
discretization method designed to accommodate drainage systems of varying sizes, thereby
effectively training the model to predict maximum flood depths for 3 design storms (i.e., 20-,
100- and 1000-year return periods). As this is a supervised learning task, the model is
trained using input–output instances where the inputs consist of various terrain features
and the outputs are the maximum depths estimated from simulations using a detailed 2D
hydraulic model [13].

2.2. Study Area and Data

For this study, we collected terrain data—the primary inputs to the DL model—
corresponding to 28 catchments from across England, UK. These selected catchments
cover most of the country (Figure 1), and these datasets exhibit an overlap at the bound-
aries with adjacent catchments. Of the 28 catchments, 25 serve as the training and validation
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sets, and the remaining 3 are for testing. These 3 test catchments are located in 3 different
regions (south, north and centre) of the country.

The target data for the DL model are maximum surface water flood maps generated
by a 2D hydraulic model in response to 3 different design storms. We use the proprietary
hydraulic model JFlow, developed by JBA Consulting, which solves the 2D shallow water
equations and leverages graphics processing units to facilitate large-scale simulations
in a swift and efficient manner. A model description and example applications appear
elsewhere in the literature [13].

The UK surface water flood map utilizes precipitation depth at a 5 km grid resolution,
using the rainfall intensity duration frequency (IDF) model described by [14], (often referred
to as the FEH13 model). These IDF curves are translated into event hyetographs for each
5 m × 5 m DEM grid cell used by JFlow using the ReFH2 method that produces a storm
profile augmented by losses due to soil storage and urban/rural land classification. The
method is described in [15,16].
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Figure 1. All training (includes validation catchments) and 3 test catchments.

2.3. U-Net

The U-Net architecture, proposed by Ronneberger and colleagues in 2015 [17], is an
autoencoder-like structure equipped with skip connections and is predominantly utilized
in image segmentation tasks. The U-Net consists of a contracting pathway designed to
encapsulate the context, and a symmetrically expanding pathway that facilitates accurate
localization. Skip connections, bridging the contracting and expanding pathways, permit
the model to utilize low-level features for high-precision segmentation. U-Net has attained
significant popularity within the realm of medical imaging, where it has demonstrated
unparalleled performance across a spectrum of segmentation tasks.

2.4. Error Statistics

To assess the performance of the proposed U-Net model in emulating the results of
JFlow, the model predictions in terms of maximum water depths are directly compared
with the outputs from the hydraulic model. The root-mean-square error (RMSE) [18]
and the modified index of agreement (D1) [19] are used to evaluate the overall model
performance in capturing the maximum flood depths. In addition, the critical success index
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(CSI), as used by [11], was used to assess the spatial performance of the predicted maps.
The expressions of these indices are described in Table 1.

Table 1. Evaluation metrics used in this study.

Indicator Formula 1 Range and Optimal Score

RMSE
√

∑N
i (Oi−Pi)

2

N
[(0, ∞), 0]

D1 1− ∑N
i |Oi−Pi|

∑N
i (|Oi−O| + |Pi−O|)

[(0, 1), 1]

CSI Hits
Hits + False pos. + Misses [(0, 100), 100%]

1 N is the sample size; Oi, Pi and O are the ‘observed’, ‘predicted’ and ‘observed mean’ values. Hits are the flooded
cells in both U-Net and JFlow, false positives are the flooded cells predicted by only the U-Net model and misses
refer to the cells only predicted by the JFlow model.

3. Experimental Details

This section provides the key details related to the data pre-processing, the U-Net
construction and the model training procedure.

3.1. Data Pre-Processing

In the domain of data-driven modelling, the efficacy of a model is significantly influ-
enced by the quality and relevance of the input data. For flood depth modelling specifically,
Löwe et al. [12] identified 11 potential terrain datasets, each encapsulating a wide range of
topographical features. However, we could not repeat this given the substantial compu-
tational resources and more extensive network architecture that using 11 datasets would
necessitate. Our primary focus was on exploring the feasibility of constructing a transfer-
able data-driven model capable of estimating maximum flood depths across various return
periods. As such, identifying the optimal set of model inputs was beyond the scope of this
investigation and, consequently, we acknowledged that the terrain features used in our
model have not been optimized.

The data pre-processing consisted of a four-step process. For the first step, terrain
features such as surface elevation, flow accumulation and slope were computed from the
DEM. In addition, a drainage mask (binary raster where cells within channels were encoded
as ones and the remaining cells were zeros) was used as the fourth input. The resolution of
the input data was downgraded from 5 m to 10 m to expedite training times.

The second step involved dividing terrain features by their respective maximum
values to rescale the input datasets within a range of 0–1. Additionally, invalid cells were
replaced with zero and the target datasets were filtered by assigning a value of zero to
depths less than 0.1 m.

For the third step, a systematic patch generation method was used to develop training
data patches. This process involved padding the zeros along the catchment boundaries
to equalize their sizes, followed by selecting a patch size of 1024 × 1024 using a moving
window technique. During this phase, data augmentation techniques, such as vertical and
horizontal flipping, were used to increase the size of the training data samples.

For the fourth and final step, the patches from step 3 were stacked to form raster
maps composed of multiple image channels. The dimensions of an input patch were set
to 2 × 1024 × 1024 × 4, where 2 refers to the batch size (comprising the actual patch and
an augmented patch, either vertically or horizontally), 1024 refers to the size of the patch
and 4 refers to the number of channels. The dimensions of an output patch were set to
2 × 1024 × 1024 × 3, where the 3 refers to the flood depths corresponding to the 3 design
storms (with return periods of 20, 100 and 1000 years).

3.2. U-Net Architecture and Training

We used a U-Net with the aim of maintaining detailed spatial patterns in the outputs
while also ensuring a large ‘receptive field’, which refers to the ‘visible pixels’ of the input
layer for each output pixel [20]. From a hydrological perspective, a larger receptive field
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facilitates the capture of water flow from upstream to downstream, which results in water
pooling in smaller regions, as the model can learn from global terrain information as
opposed to merely local terrain patterns [21]. Consequently, the model’s latent layer (the
last layer of the encoder section) possesses a receptive field larger than the input size.
We selected an input size of 1024 × 1024 for the U-Net model to retain local and global
information, while also ensuring the model’s size was compatible with the computing
device and did not exceed memory capacity.

Figure 2 shows the architecture of our U-Net model. Overall, the model comprises four
layers, with each layer consisting of two convolutional layers followed by a ‘maxpooling’
layer. We use the ‘Leaky Relu’ activation function in all layers other than the output layer,
which uses the ‘rectified linear unit (Relu)’ activation function. The ‘Leaky Relu’ activation
function offers two advantages: it circumvents the vanishing gradient problem [22] and
mitigates the ‘dead neuron’ issue associated with the ‘Relu’ activation function [23]. The
‘Relu’ function was used in the output layer to ensure that predicted values are always
above zero. The ‘kernel size’ of the encoder section was set to 5 × 5, the upsampling
(decoder) was 3 × 3 and the ‘maxpooling’ size was 2 × 2.
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Our U-Net model was constructed using the ‘Keras’ application programming inter-
face (API) in conjunction with Tensorflow 2.5.0. The model’s training was facilitated by the
Adam Optimizer [24], which operated with a learning rate of. Due to memory constraints
associated with the available graphics card (Nvidia Quadro RTX 5000), a batch size of
two was implemented. The model was trained over a span of 2000 epochs, with the mean
square error (MSE) serving as the loss function.

Finally, the training process was repeated 3 times using the same network architecture
for 3 different training and validation datasets (each time, 20 different catchments were
used for training and 5 for validation from a set of 25 catchments). This was done to
observe any significant differences in the predicted flood maps when different training and
validation data were used. Training the U-Net three times means that we have three models
with three different model parameters (weights and biases). These three models can be
used independently to predict maximum water depths or can be treated as a three-member
ensemble model.
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4. Results and Discussion
4.1. Training and Validation Loss

The associated training and validation loss for 2000 epochs is shown in Figure 3.
The models continue to exhibit convergence tendencies beyond the 2000 epoch mark,
but we ceased training at this point to prevent model overfitting, thereby maintaining
their generalizability and performance on unseen data. An additional consideration was
the substantial computational time required for the training of a single model (~20 days
on average).
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4.2. Assessing the Outputs—Larger Depth for a Larger Event

After the model training, we evaluated the depths corresponding to various return
periods. The models need to avoid producing counterintuitive outcomes, such as predicting
elevated water levels for storms of lower return periods compared to those with higher
return periods. As previously noted, the catchments exhibit overlapping boundaries. Con-
sequently, a comparison of results would not be accurate if a portion of the test catchments
were employed for training purposes. To address this issue, we chose three subdomains
from each of the catchments for the purpose of comparing depth maps. This approach
ensures that the comparisons were based on distinct geographic areas, eliminating the
potential bias that could result from overlapping catchment boundaries in the training and
test datasets.

Aside from a few minimal discrepancies, we found that the models were indeed
capable of predicting increased depths for higher return periods. For instance, following
the aggregation process, where maximum depths from all three models were combined
into one maximum depth map, one centrally situated test catchment (Area 5404) had a
single pixel where the depth associated with a return period of 100 exceeded that of a return
period of 1000. Overall, such inconsistencies were noted in 17 pixels spread across the 3 test
catchments. Comparatively, the total count of pixels in the case of JFlow maps amounted to
13,790. These observations indicate that the U-Net model’s learning was guided more by
global terrain features than local ones, demonstrating its capability for generalization.

4.3. Comparison of U-Net and JFlow Map Outputs

To compare the flood maps, we converted the predicted and the reference (JFlow
outputs) water depths into categorical maps. Depth values less than 0.1 m were set to 0 (dry)
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and otherwise to 1 (wet). The CSI, a commonly used metric for categorical forecasting, was
utilized to ascertain the model’s ability to accurately discern wet and dry cells. The CSI
encompasses both false alarms and misses, thereby providing a more balanced assessment
of actual model performance. The CSI scores indicate that the U-Net model was less
accurate than JFlow in detecting wet cells (Table 2). However, a closer look at the flood
maps revealed that the U-Net model accurately detected wet cells in regions characterized
by channels, tributaries, valleys and sinks, but less accurately in urban environments.
This can be attributed to the distinct terrain characteristics of urban areas and the bias
in our training data, which predominantly represent rural or semi-urban areas. We also
found that the model struggled to accurately simulate flooding along transport lines (roads,
railways) and impervious urban areas. At the same time, a clear success was that the
model did not predict the presence of water in areas where that would be implausible.
Moreover, the model was successful in identifying hotspots, which are areas where water
predominantly accumulates.

Table 2. Error statistics for the test catchments.

Storm Area CSI (%) RMSE (m) D1

20-year 20 0.04 0.69
100-year Area 7400 (North) 28 0.05 0.64

1000-year 40 0.09 0.60

20-year 31 0.04 0.74
100-year Area 5404 (Centre) 37 0.05 0.76

1000-year 46 0.07 0.78

20-year 37 0.03 0.72
100-year Area 4600 (South) 43 0.04 0.74

1000-year 45 0.07 0.74

4.4. Comparison of U-Net Model and JFlow Depth Outputs

As with the map outputs, we conducted a comparative analysis of the U-Net model’s
predicted depths against those from JFlow. For the purposes of comparison of depth, all
cells with a water depth less than 0.1 m were assigned a value of 0. This adjustment was
implemented consistently across both models. The discrepancies in water depth predictions
were systematically quantified using RMSE and D1. The RMSE metric assigns relatively
high weights to large errors and was particularly useful when such errors are deemed
undesirable. The modified index of agreement, represented by D1, has the advantage of
appropriately weighting errors and differences, without inflation due to squared values.

Our analysis revealed a stronger concurrence in the depth maps, though the model
consistently underestimated the depths by a smaller margin. Higher D1 values indicate that
the U-Net model demonstrates good performance in estimating water depths. However, a
worse performance was found for ‘Area 7400’ compared to the other two areas (Table 2).
This can be attributed to the unique nature of the terrain in that catchment, where the
surface elevation was higher compared to those in the training data.

Figure 4 compares a U-Net-model-predicted flood against an equivalent JFlow-simulated
map, also showing the difference between the two. The comparison is consistent with the
quantitative error measurements in Table 2, and it is evident that the U-Net model consis-
tently underestimates both the extent and depths of flooding across the test catchments.
However, despite the overall discrepancies in the predicted depths, most of the errors tend
to cluster within the lowest error band (Figure 4C). While there are instances of large errors,
these errors do not occur in areas that should remain void of water accumulation.
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5. Conclusions

We have presented a generalised data-driven model for predicting maximum flood
water depths, which demonstrates that advanced DL algorithms can detect flood zones
efficiently using terrain attributes.

A key objective of formulating a data-driven model was the rapid production of flood
maps. The three U-Net models trained within the scope of this study demonstrate this
potential. In this study, we formulated and evaluated three U-Net models for swift flood
prediction utilizing topographical features (we aggregated outputs from these models
to produce a single flood map for each return period). The findings suggest that the
models have the potential to predict flood depths in uncharted catchments across multiple
return periods. Nevertheless, the models also frequently underestimate both the depth
and extent of water. This underscores the need for further refinement of the model to
enhance its accuracy while maintaining its speed, highlighting an avenue for future research
and development.

Temporally speaking, each model was capable of estimating depths for three return
periods across a domain of approximately 1248 square kilometres within an impressive
timeframe of roughly 13 s. Such efficiency may prove valuable in rapid response and
planning scenarios, despite the trade-offs inherent in the data-driven approach.

However, our objective was not exclusively to construct a model for either fully urban
or rural areas, but rather a hybrid model that encompasses both. The performance of the
model could potentially be enhanced through the optimization of network architecture,
fine-tuning of hyperparameters and a systematic search for suitable input data. In [12],
the authors proposed a forward selection methodology that could potentially be utilized
to identify the most suitable set of inputs. Furthermore, it is essential to recognize that
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strategic selection of terrain features can significantly streamline the process of exploratory
data analysis, substantially reducing the time invested in this phase.

Additionally, our observation of significant variability in the water depths predicted
by the three models underscores the necessity for a comprehensive assessment of uncer-
tainty. These strategies could collectively contribute to a more robust and accurate model,
reinforcing its predictive capacity while also providing a more nuanced understanding of
the inherent uncertainty in such predictions.

A trade-off exists between the water depth estimations produced by a hydraulic model
and those derived from a data-driven model. Hydraulic models, underpinned by physical
laws and centuries’ worth of scientific theory and formulae, are generally deemed more
reliable. Conversely, data-driven models do not inherently account for physical constraints,
such as mass balance. Given this, one good scenario would be to have a data-driven model
capable of generating flood maps expeditiously while maintaining an acceptable margin
of error.
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