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Abstract: Water resource forecasting plays a crucial role in managing hydrological reservoirs, sup-
porting operational decisions ranging from the economy to energy. In recent years, machine learning-
based models, including sequential models such as Long Short-Term Memory (LSTM) networks, have
been widely employed to address this task. Despite the significant interest in forecasting hydrological
series, weather’s nonlinear and stochastic nature hampers the development of accurate prediction
models. This work proposes a Variational Gaussian Process-based forecasting methodology for
multiple outputs, termed MOVGP, that provides a probabilistic framework to capture the predic-
tion uncertainty. The case study focuses on the Useful Volume and the Streamflow Contributions
from 23 reservoirs in Colombia. The results demonstrate that MOVGP models outperform classical
LSTM and linear models in predicting several horizons, with the added advantage of offering a
predictive distribution.

Keywords: streamflow contributions; predictive distribution; forecasting; Gaussian process;
useful volume

1. Introduction

Hydrological forecasting plays a crucial role in planning and operation activities.
On a short-term scale, it allows for management of water systems and resources, includ-
ing irrigation, flood control, and hydropower generation. In the energy sector, hydro-
logical forecasting supports the optimal scheduling of hydroelectric power generation.
Accurately predicting hydroelectric plants’ water release and reservoir volume enables
scheduling optimal thermal plant generation while minimizing fuel costs and improving
the energy sector’s sustainability [1,2]. For example, Brazil’s National Electrical System
Operator provides streamflow time series of hydropower plants that supports forecasting
research [3]. In Colombia, hydropower plants contribute 97.37% of the renewable energy,
including 87.54% from reservoirs [4]. Therefore, there is a great interest in developing accu-
rate hydrological forecasting models to manage and exploit water resources sustainably
and effectively.

Forecasting models can be short-, mid-, or long-term, where the former enable dispatch
and optimization for power systems. Long-term forecasting supports reliability planning
through system expansions and weather analysis at a large scale [5,6]. Hence, the design
of forecasting models depends on the prediction horizon, with two primary approaches:
physically-driven concept rules and data-driven models which learn from time-series
samples. Models in the first category have demonstrated their capability to predict various
flooding scenarios. However, physical modeling often requires extensive knowledge
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and expertise in hydrological parameters and various datasets, demanding intensive
computation which results in unsuitability for short-term prediction [7]. Since data-driven
models can learn complex behavior from the data, streamflow forecasting traditionally
relies on this second approach. The most extensively used data-driven forecasting model is
the Linear AutoRegression (LAR), due to its simplicity and interoperability [8]. However,
LAR fails to adequately represent streamflow series because of the complex water resource
patterns, such as varying time dependencies, randomness, and nonlinearity [3,6,9].

The most prominent models for dealing with nonlinear trends are neural networks
(NNs), known for their flexibility and outperformance of other nonlinear models [10]. For
instance, a hybrid model coupling extreme gradient boosting to NNs predicted monthly
streamflow at Cuntan and Hankou stations on the Yangtze River, outperforming baseline
support vector machines [11]. Additionally, recurrent architectures, such as Long Short-
Time Memory (LSTM), have proven to improve the scores of classical NNs in daily stream-
flow forecasting, given their ability to capture seasonality and stochasticity [5,8]. However,
the numerous neural network architectures available make researchers question which one
will best fit a given problem, as no single model is universally applicable [7]. Further, the
inherent noise present in hydrological time series influences forecasting accuracy [3,10].

Some operational tasks demand uncertainty quantification for the prediction due to
the inherent noise. Gaussian Processes (GP) satisfy such a requirement by approximating a
predictive distribution. GP-based forecasting has proven remarkable results in streamflow
forecasting up to one day and month ahead [12,13]. In addition, a kernel function, com-
bining squared exponential, periodic, and rational quadratic terms, allowed GP models
to fit streamflow time series for the Jinsha River [9]. In another approach, a probabilis-
tic LSTM coupled with a heteroscedastic GP produced prediction intervals without any
post-processing to manage the daily streamflow time series uncertainty [14]. However,
GP-based approaches pose two research gaps [15]. Firstly, the probabilistic couple approach
still complicates the model calibration. Secondly, natural probabilistic modes such as GP
have only been used to study scalar value signals.

This work develops a forecasting methodology using a GP-based probabilistic ap-
proach applied to hydrological resources, supporting multiple output predictions and
reducing the model training complexity. The methodology, termed MOVGP, combines
the advantages of Multi-Output and Variational GPs for taking advantage of relationships
among time series, adapting the individual variability to handle large amounts of samples.
The research compares the performance of the MOVGP against an LSTM neural network
and a Linear AutoRegression (LAR) model in forecasting two multi-output hydrological
time series, namely, Useful Volume and Streamflow Contributions of 23 reservoirs. It is
worth noting that the considered time series correspond to actual reservoir data taken
into account for hydropower generation in Colombia. Attained results prove the abil-
ity of MOVGP to be adapted to varying prediction horizons, generally outperforming
contrasted models.

The paper agenda is as follows: Section 2 covers methodologies and theoretical bases
used for developing and training Multi-Output Variational GP models; Section 3 validates
the MOVGP training and tests the three models in terms of the Mean Square Error (MSE);
Final remarks and future work conclude the work in Section 4.

2. Mathematical Framework
2.1. Gaussian Process Modeling Framework

A Gaussian Process (GP) is a collection of random variables related to the infinite-
dimensional setting of a joint Gaussian distribution. Consider the dataset of N samples
D = {X, Y}, where X ∈ RL×N is the design matrix, with columns of vector inputs x ∈ RL

of L features, and Y ∈ RD×N is the target matrix, with columns of vector outputs y ∈ RD

of D outputs for all N cases. GP framework conditions a subset of observations to create a
map that models the relationship between X to Y.
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Then, the Single-Output GP (SOGP) attempts to represent a scalar-valued function
f : RL → R, i.e., where D = 1 with GP framework. This model is completely specified by a
mean function m : RL → R and covariance (kernel) function k : RL ×RL → R, with vector
parameters θm and θk notated, respectively, as follows:

f (x) ∼ GP(m(x | θm), k(x, x′ | θk)) (1)

In more realistic scenarios, single-output observation y presents Gaussian noise
ε ∼ N (0, σ2

N) models as a noise-added version of the function f , such as y(x) = f (x) + ε.
Let X∗ ∈ RL×N′ be a test matrix with N′ test vector inputs x∗ ∈ RL, f∗ ∈ RN′ , in which
m = [m(xi | θm)] ∈ RN denotes mean train vector, m∗ = [m(x∗i | θm)] ∈ RN′ denotes mean
test vector, K = [k(xi, xj | θk)] ∈ RN×N denotes covariance train matrix, K∗ = [k(xi, x∗j |
θk)] ∈ RN×N′ denotes covariance train–test matrix, and K∗∗ = [k(x∗i, x∗j | θk)] ∈ RN′×N′

denotes covariance test matrix. The joint Gaussian distribution of the observations vector y
and test outputs vector f∗, named previously, are specified as shown:

[
y
f∗

]
∼ N

([
m
m∗

]
,
[

K + σ2
NIN K∗

K>∗ K∗∗

])
(2)

where IN is the identity matrix of size N derived in the conditional distribution, calculated
as follows:

f∗|X∗, X, y ∼ N (f̄∗, cov(f∗)) (3)

with the following definitions:

f̄∗ = m∗ + K>∗ [K + σ2
NIN ]

−1(y−m) (4)

cov(f∗) = K∗∗ −K>∗ [K + σ2
NIN ]

−1K∗ (5)

Notice, from Equations (4) and (5), that mapping construction is analytic and, there-
fore, does not employ an optimization process. Nevertheless, selection of parameters
at θm and θk and observation noise variance σN can be estimated using marginal like-
lihood from Equation (2), p(y | X) = N (m, K + σ2

NIN), and minimizing negative log
marginal likelihood:

min
θm ,θk ,σN

− ln(p(y | X)) =
1
2
(y − m)>K−1

y (y − m) +
1
2

ln(| Ky |) +
N
2

ln(2π) (6)

where Ky = K + σ2
NIN is the covariance matrix for the noisy observations. Thus, the opti-

mization problem in Equation (6) can be efficiently solved via a gradient-based optimizer [16].

2.2. Multi-Output Gaussian Process (MOGP)

MOGP generalizes SOGP mapping for D ≥ 1 outputs as f D : RL → RD with GP
framework, where f D is a vector-valued function. The MOGP model, similar to the SOGP
model, is entirely defined by its mean vector function mD : RL → RD and covariance matrix
function kD : RL × RL → RD×D, each with vector parameters θm and θk, respectively,
expressed as follows:

f D(x) ∼ GP(mD(x | θm), kD(x, x′ | θk)) (7)

Let ΣN ∈ RD×D be a diagonal matrix such that ΣN = diag{σ2
Nd}D

d=1, with σN,d being
the dth output observation noise variance and yD ∈ RND being a ravel version vector of
target matrix Y. Following the procedure established in Equation (3), deriving the MOGP
posterior distribution takes place as follows:

f∗|X∗, X, Y ∼ N (f̄∗, cov(f∗)) (8)
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with the following definitions:

f̄∗
D
= mD

∗ + KD>
∗ [KD

y ]
−1(yD −mD) (9)

cov(f∗) = KD
∗∗ −KD>

∗ [KD
y ]
−1KD

∗ (10)

where KD
y = KD + ΣN ⊗ IN , ⊗ represents the Kronecker product between matrices and

upper index D denotes D− dimension version of SOGP quantities.
To deal with developing an admissible correlation between outputs, the Linear Model

of Coregionalization takes place, expressing each output of MOGP as a linear combination
of Q (known as latent dimension) independent SOGP as follows:

f D(x) =
Q

∑
q=1

aqgq(x) (11)

where aq ∈ RD is the vector coefficients, with values ad
q associated with contributions of

the q-th independent SOGP gq(x) at the dth output with kernel function kq. In this way, the
covariance matrix of the MOGP model is given by the following [17,18]:

kD(x, x′) =
Q

∑
q=1

Bqkq(x, x′) (12)

where Bq ∈ RD×D = aqa>q is a semi-definite positive matrix known as the coregionaliza-
tion matrix.

2.3. Variational Gaussian Process (VGP)

The main challenge in implementing MOGP models lies in their complexity O(D3N3)
and storage demand O(D2N2) becoming intractable for a dataset of a few thousand sam-
ples [19], because the need to invert the matrix KD

y in Equations (9) and (10) is usually
performed by Cholesky decomposition. To overcome the problem of computational com-
plexity, a new set of M� N trainable inducing points Z ∈ RL×M and inducing variables
u = f D(Z) ∈ RDM augment the output variables fD = f D(X) ∈ RDN . The marginal
distribution for the output variables is expressed as p(fD | X) =

∫
p(fD | X, u)p(u)du. The

Variational Gaussian Process (VGP) allows approximating p(fD | X) with q(fD | X) by
marginalizing out the set of inducing points [20]:

q(fD | X) :=
∫

p(fD | X, u)q(u)du (13)

Since the output distribution comes from a MOGP, q(u) is assumed as Gaussian
N (u | mz, S), with mean mz ∈ RDM and covariance S ∈ RDM×DM, so that the approxi-
mating distribution also becomes Gaussian:

q(fD | X) = N
(

fD | Amz, KD + A(S−KM,M)A>
)

(14)

with A = KMK−1
M,M, KM ∈ RDN×DM as the kernel function in Equation (12) evaluated at all

pairs of inducing–training points and KM,M ∈ RDM×DM the kernel function values between
pairs of inducing points. Since optimizing the parameters of q(u) yields a stochastic
framework, the cost function in Equation (6) turns into a tractable marginal likelihood
bound for the multi-output case:

log p(yD | X) ≥
N

∑
n=1

Eq( f D
n |xn)

[log p(yD
n | f D(xn))]−KL[q(u) ‖ p(u)] (15)
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in which KL[q(u) ‖ p(u)] is the Kullback–Leibler (KL) divergence between q(u) and p(u).
This approach offers a notable benefit by diminishing the complexity of the MOGP to
O(DND2M2) due to the inversion of the matrix KM,M, which is smaller than KD

y . As a
result, the model can efficiently handle an increased number of samples N, providing an
opportunity to gather more information from the dataset at a reduced cost.

3. Results and Discussions

The current section aims to thoroughly communicate the implications of the forecasting
results on hydric time series using MOVGP. Firstly, we offer a detailed description of the
considered dataset, including information on its sources, characteristics, and preprocessing
steps. Further, the manuscript details the hyperparameter tuning experiments and describes
the validation strategy. Finally, we examine the forecasting performance and highlight
notable trends and observations.

3.1. Dataset Collection

We validate the MOVGP regressor on a hydrological time series forecasting task of
the Useful Volume and Contributions from 23 Colombian reservoirs, daily recorded daily
from 1 January 2010, to 28 February 2022, yielding 4442 daily measurements. Despite the
volumetric nature of the raw data, the hydroelectric power plants report Useful Volumes
and Streamflow Contributions as their equivalent in kilowatt-hour (kWh) units, since such
a representation is more practical for daily operations. Figure 1 visually describes the
statistics for each reservoir. Note that amplitudes vary from millions to billions of kWh
among reservoirs, due to each generating at a different capacity. In the case of Useful
Volumes, one finds some highly averaging time series with a few variations (see reservoirs
A and L), but also cases of low means with a significant variation (as the reservoir B). Notice
from Streamflow Contributions that the reservoir K boxplot does not appear, due to zero
values reported for all time series. Some reservoirs also present outlier volume reductions
(black crosses), contrasting with the outlier increments in streamflow. Two main factors
produce the above nonstationary and non-Gaussian behavior: the Colombian weather
conditions produce unusual rainy days and long dry seasons, and the operation decisions
can impose water saving or generation at total capacity each day.
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3.2. MOVGP Setup and Hyperparameter Tuning

Firstly, we define the validation task as predicting the H-th day in the future using
the current hydrological measurement in all the reservoirs, yielding L = 23 inputs. Predic-
tion horizon H ranges from one to twenty-five days, exploring short- and medium-term
hydrological forecasting performance. For proper validation, MOVGP and contrasting
approaches were trained on the first 10 years and validated on the data from 28 February
2021 to 28 February 2022, corresponding to 365 testing samples. Figure 2 presents the
testing time series for the Useful Volume of three reservoirs. Noting the varying scales that
lead to potential bias during the training stage, a preprocessing step normalizes the dataset
by centering the time series from each reservoir on zero and scaling it to unit standard
deviation. Normalizing means and standard deviations result from the training subset
statistics avoids test biasing.

8 Authors Suppressed Due to Excessive Length

to unit standard deviation. Normalizing means and standard deviations result219

from the training subset statistics, avoiding test biasing.
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Figure 2. Testing data for Streamflow Contributions of three reservoirs from March 2021 to February
2022, evidencing the within and between time series variability.

Each type of time series, Useful Volume and Streamflow Contribution, considers an
individual forecasting model. Hence, the experimental framework trains two independent
MOVGPs with D = 23 outputs. The proposed methodology considers a constant for
the MOVGP mean function, mD(x | θm) = θm, with θm ∈ RD as the single trainable
vector parameter. The proposed methodology builds the MOVGP covariance function
in Equation (12) from the widely used squared exponential, in Equation (16), allowing a
smooth data mapping:

kq(x, x′ | θq) = exp
(
−1

2
(x− x′)>Θ−2

q (x− x′)
)

(16)

where the diagonal matrix Θq = diag{∆ql}L
l=1 ∈ RL×L gathers the length scale factors

∆ql ∈ R+ from each input dimension. The trainable covariance parameters become σN,d
and ∆lq from the Q independent SOGP within the MOVGP framework. Then, a 10-fold
time series split model selection determines the optimal hyperparameter setting for the
forecasting models by searching within the following grid: number of inducing variables
M ∈ {4, 8, 16, 32, 64, 128} and latent space dimension Q ∈ {2, 4, 8, 16, 23, 46, 69, 92, 115}.

Figure 3 presents the 10-fold-averaged cross-validation mean squared error (MSE)
along the grid search while fixing the model horizon to H = 1 for both the Useful Volume
and Streamflow Contributions. Hyperparameter tuning exhibits that, the larger the Q and
M, the smaller the MOVGP error and the slower the improvement. Therefore, the forecast
task on a very short horizon yields complex models that hardly overfit. However, the
latent dimension influences the performance significantly more than the induced variables,
agreeing with the model development: the latent dimension controls the embedding quality,
while the induced variables reduce the computational burden without compromising
the performance.
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MSE is computed on a ten-fold cross-validation.
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Figure 3. MOVGP hyperparameter tuning for horizon H = 1 using a grid search on the latent
space dimension L and the number of induced variables M. Testing MSE is computed on a 10-fold
cross-validation.

For each considered horizon H ∈ {1, 2, 3, 5, 7, 9, 10, 15, 20, 25}, Figure 4 illustrates the
hyperparameters which reach the best testing MSE. For the Useful Volume time series,
shown in Figure 4a, the number of latent variables Q increases while the number of inducing
points M decreases. A Pearson correlation coefficient of −0.82 between the optimal Q and
M indicates that the model trades off its complexity between hyperparameters: increasing
Q allows a more flexible model, whereas increasing M produces MOVGP models that
retain more information about the time series. In turn, the optimal Q for the Streamflow
Contribution remains at the highest evaluated value while M decreases for the last horizons
(Figure 4b). Such a fact suggests that the latent space is large enough to decode the
relationship between past Streamflow Contributions and the farthest horizon. Thus, a
flexible model evades a large explicit memory to seize the relevant dynamics, and vice versa.
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horizon H for Useful Volume and Streamflow Contributions.

3.3. Performance Analysis

The performance analysis compares MOVGP against two widely considered hydro-
logical forecasting models: a straightforward Linear AutoRegression (LAR) model as a
baseline and a Long Short-Term Memory (LSTM) network with the hidden space dimension
and the number of recurrent layers as hyperparameters. Specifically for the LSTM, the
same model selection strategy—10-fold time series split—tunes the hyperparameters using
the training subset. Figure 5 illustrates the MSE for the 10-fold cross-validation attained by
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the three contrasted models along the explored horizons for both time series. In general,
error increases with the prediction horizon, due to the forecasting task becoming more
complex for far away days. Nonetheless, the autoregressive model outperforms LSTM,
closely followed by MOVGP, up to a 15-day horizon, suggesting linearly-captured time
dependencies in the short term. In contrast, MOVGP reaches the lowest error for the longest
horizons, followed by LSTM, evidencing nonlinear time relationships at medium-term
which are profited by more elaborate models. The above results indicate that MOVGP was
the most flexible model on average, exploiting the time-varying interactions, competing at
short-term, and outperforming at medium-term horizons.
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MOVGP models along the prediction horizon.

At the testing stage, trained LAR, LSTM, and MOVGP models forecast the last 365 days
on the dataset for both time series at each horizon considered. Figure 6 depicts reservoir-
wise testing MSE boxplots computed over the 10 prediction horizons for the Streamflow
Contributions. Note that reservoir T makes the models perform the worst, whereas reservoir
D becomes the least challenging. Moreover, the widespread error at reservoir L contrasts
with the small dispersion at reservoir D. Therefore, varying boxplots advise the changing
forecasting complexity over the horizons and reservoirs despite corresponding to the
same hydrological time series. According to the grand averages in dashed lines, the
MOVGP model obtains the best average performance, followed by the LAR. Thus, for the
Contributions time series, MOGP offers a better explanation for nonlinearities in the data
than LSTM.

Title Suppressed Due to Excessive Length 11

At the testing stage, trained LAR, LSTM, and MOVGP models forecast276

the last 365 days on the dataset for both time series at each horizon consid-277

ered. Figure 6 depicts reservoir-wise testing MSE boxplots computed over the278

ten prediction horizons for the Streamflow Contributions. Note that reservoir279

T makes the models perform the worst, whereas reservoir D becomes the least280

challenging. Also, the widespread error at reservoir L contrasts with the small281

dispersion at reservoir D. Therefore, varying boxplots advise the changing fore-282

casting complexity over the horizons and reservoirs despite corresponding to the283

same hydrological time series. According to the grand averages in dashed lines,284

the MOVGP model obtains the best average performance, followed by the LAR.285

Thus, for the Contributions time series, MOGP offers a better explanation for286

nonlinearities in the data than LSTM.

A B C D E F G H I J K L M N O P Q R S T U V W

0

1

2

3

T
es
ti
n
g
M
S
E

Linear Avg. Linear

LSTM Avg. LSTM

MOVGP Avg. MOVGP

Fig. 6: Distribution for the testing MSE of contrasted approaches at each reser-
voir for the Streamflow Contributions. Statistics are computed over the ten pre-
diction horizons. The dashed line averages the reservoir-wise MSE.

287

Figure 7 offers time series plots for Useful Volume and Contributions with288

their respective one-day horizon predictions from the forecast models for three289

reservoirs of interest. Notice from Fig. 7a that the MOVGP and Linear models290

reach a well-fit prediction and learn the smoothness of the reservoir data, but291

the MOVGP model presents the advantage of yielding a predictive distribution292

and, therefore, a confidence interval. In addition, the LSTM model shows abrupt293

changes that deviate from the actual behavior of the curve producing a higher294

error. For Fig. 7c, a narrow confidence interval describes the time series noise.295

Observe the presence of a peak at day 65 that is out of the confidence interval,296

possibly an outlier classified as an anomaly by predictive distribution offered by297

the MOVGP model. In the case of the Streamflow Contributions, the three mod-298

els closely follow the abrupt curve trend and lie within the confidence intervals299

for reservoir A in Fig. 7b. Lastly, Fig. 7d displays peaks in the Streamflow Contri-300

butions of reservoir T. Although no model catches the peak’s tendency, MOVGP301

Figure 6. Distribution for the testing MSE of contrasted approaches at each reservoir for the Stream-
flow Contributions. Statistics are computed over the 10 prediction horizons. The dashed line averages
the reservoir-wise MSE.

Figure 7 offers time series plots for Useful Volume and Contributions with their
respective one-day horizon predictions from the forecast models for three reservoirs of
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interest. Notice, in Figure 7a, that the MOVGP and Linear models reach a well-fit prediction
and learn the smoothness of the reservoir data, but the MOVGP model presents the
advantage of yielding a predictive distribution and, therefore, a confidence interval. In
addition, the LSTM model shows abrupt changes that deviate from the actual behavior of
the curve, producing a higher error. For Figure 7c, a narrow confidence interval describes
the time series noise. Observe the presence of a peak at day 65 that is out of the confidence
interval, possibly an outlier classified as an anomaly by predictive distribution offered by
the MOVGP model.

Figure 7. Useful volume (left) and contributions (right) forecasted by the contrasting approaches on
one-year test data at reservoirs A, K, and T (top to bottom) and one-day prediction horizon H = 1.

In the case of the Streamflow Contributions, the three models closely follow the abrupt
curve trend and lie within the confidence intervals for reservoir A in Figure 7b. Lastly,
Figure 7d displays peaks in the Streamflow Contributions of reservoir T. Although no model
catches the peak’s tendency, MOVGP explains them as outliers because of the predictive
distribution. In this way, the MOVGP model is less influenced by anomalies, producing
better generalization and, thus, outperforming the other models.

4. Concluding Remarks

This work proposed a forecasting methodology for multiple output prediction of
Useful Volume and Streamflow Contributions of Colombian reservoirs using Variational
Gaussian Processes. Since the coregionalization of MOVGPs imposes a unique latent
process, generating multiple outputs, we devoted a single model for each hydrological
variable to minimize overgeneralization issues. The proposed MOVGP was compared
against LSTM-based and Linear AutoRegressive models using actual time series. The
hyperparameter tuning stage proved that MOVGP suitably adapted to time complexity
by optimizing the number of latent variables and inducing points to control model flex-
ibility. The comparison in testing data, shown in Figure 5, revealed that the MOVGP
outperformed the others in predicting long-term horizons, particularly when the linear
model missed relationships between inputs and outputs. Therefore, MOVGP outperforms
hydrological forecasting, providing prediction reliability and outlier detection through the
predictive distribution.
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For future work, we devise the following research directions. First, we will extend the
methodology to support energy-related time series such as daily thermoelectric schedules.
Secondly, we will develop deep learning models to learn complex patterns in hydrological
time series.

Finally, to overcome the overgeneralization and linear coregionalization restriction
issues, we will work on time-variant convolutional kernel integration.
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