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Abstract: The problem of anomaly detection in time series has recently received much attention, but
in most practical applications, labels for normal and anomalous data are not available. Furthermore,
reasons for anomalous results must often be determined. In this paper, we propose a new anomaly
detection method based on the expectation–maximization algorithm, which learns the probabilistic
behavior of local patterns inherent in time series in an unsupervised manner. The proposed method
is simple yet enables anomaly detection with accuracy comparable with that of the conventional
method. In addition, the representation of local patterns based on probabilistic models provides new
insight that can be used to determine reasons for anomaly detection decisions.
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1. Introduction

Time series data, including sensor data in factories, are continuously collected in a
variety of areas. One of the important applications for analyzing such data is anomaly
detection. However, there are two major challenges in the actual implementation of
automatic time series anomaly detection systems. First, it is often difficult to obtain labeled
data for anomalies, so the data must be treated as unsupervised data, assuming that
the majority of the data are normal. The other challenge is that the maintainability and
reliability of anomaly detection systems often require a transparent anomaly detection
model and interpretability of the output. These requirements make it necessary to use
simple models, but this gives rise to a trade-off between model simplicity and anomaly
detection performance. Therefore, a new anomaly detection method is needed that is
interpretable without compromising anomaly detection performance.

One of the promising methods for solving these problems is OCLTS (One Class Time
Seires Shapelets) [1]. OCLTS applies important subsequences in time series data, called
shapelets, to enable unsupervised anomaly detection and to provide the specific parts
of the time series that are the reason for the anomaly detection. However, OCLTS has
several difficulties. First, the anomaly score is based on complex correlations between local
patterns, so there is no direct correspondence between the anomaly score and the location
in the time series that is the reason for the anomaly. In addition, the shapelets learned
by OCLTS tend to take the average shape of similar time series. For example, consider
the pattern shown in Figure 1a,b, in which a single concave point appears in a rightward
sloping waveform. The position of the concavity is different in Figure 1a,b, but when such
a pattern is the learning target, shapelets tends to have an average waveform, as shown in
Figure 1c, and the concavity feature becomes unclear. In this case, it is difficult to identify
the basis of the anomaly from the anomalous waveform with no concavity.

In this paper, we propose a method for time series representation learning and anomaly
detection based on a novel learning procedure inspired by the subsequence-based feature
transformation used in OCLTS. In the proposed method, there is one-to-one correspondence
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between the anomaly score and the local pattern representation, and the location of the
time series for the cause of the anomaly becomes clearer. By stochastically modeling the
subsequences, the proposed method provides another insight into the difference between
anomalous and normal patterns, which is different from traditional shapelets-based meth-
ods. Despite the simplicity of the proposed method, experiments using public datasets
show that it can detect anomalies with accuracy comparable to that of OCLTS.

(a) (b) (c)
Figure 1. Examples of similar subsequences (a,b) and the average subsequence of these subse-
quences (c).

2. Related Work

One of the most successful data mining methods for time series data analysis in recent
years is a method based on representations of subsequences called shapelets, which classify
time series data according to differences in subsequences rather than the entire time series.
The original method [2] searched for the most different subsequences among classes and
performed classification based on decision trees, but in [3,4], classification performance
was greatly improved by combining advanced machine learning models with feature
transformations that treat shapelets as feature transformation parameters. Shapelets can be
applied not only to time series classification problems, but also to time series clustering [5,6]
and approximation of DTW (Dynamic Time Warping) [7]. OCLTS [1], the method most
closely related to this paper, extends shapelets to the anomaly detection problem. In that
method, multiple shapelets are used for approximation over the entire time series, and the
time series is converted to a vector. A one-class SVM [8] model is defined with transformed
vectors as input, and the shapelet shape and one-class SVM model parameters are learned
simultaneously using the gradient method. The feature transformation of time series data
using shapelets proposed in OCLTS is very promising because of its extensibility in various
ways in time series data analysis based on subsequences. In this paper, we propose a
simpler algorithm for learning local patterns based on this feature transformation.

A time series data classification method called LOGIC [9] has been studied for the
probabilistic representation of local patterns in time series. In LOGIC, local patterns based
on multiple subsequences inherent in a set of time series are modeled by Gaussian process
regression and mapped to a feature space of dimension equal to the number of models
by using the likelihood of each model. By using the mapped features as input data for
various machine learning classifiers, such as random forests, time series classification can
be performed with accuracy comparable to that of state-of-the-art time series classification
methods. This method showed promising results for modeling the probabilistic behavior
of local patterns and for potentially representing times series based on the likelihood of
features. However, LOGIC targets time series classification, which is a different problem
from the one addressed in this paper. In addition, this method learns and evaluates
subsequences obtained by fixing the position of time series segmentation, and does not
take into account the case where the position of subsequence patterns shifts. In this paper,
when learning or evaluating a subsequence, the starting position of the subsequence is
searched for according to the input time series data.
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3. Preliminaries
3.1. Notation
3.1.1. Time Series Data

Let T ∈ RN×Q denote a set of N normal time series data of length Q. Let
Tn = [tn,1, . . . , tn,q] for the nth time series data.

3.1.2. Time Series Subsequence

Let τn,j = [tn,j, . . . , tn,j+L−1] of a time series Tn denote the subsequence of length L
starting at position j, where 1 ≤ j ≤ J, J = Q− L + 1.

3.2. LOPAS Transform

In this section, we describe a method for transforming time series data into feature
vectors using local patterns. This was proposed in OCLTS as a feature transform using
shapelets. Here we describe a generalized version of the transformation using any local
patterns, including shapelets. Because it was not named in [1], we call it LOPAS (Local
Patterns-based Similarity) transform.

Let M be a model for which the similarity to subsequences can be defined. For a set
M containing K models M, denote the kth model by Mk. In [1], the model corresponds to a
shapelet, and in our proposed method, described in Section 4, the model corresponds to a
multivariate Gaussian distribution. The similarity between a model M and a subsequence
τ is denoted by Ψ(M, τ). In [1], the distance between the shapelet and the subsequence
is defined as the dissimilarity; in our proposed method, the log-likelihood is defined as
the similarity.

In the LOPAS transform, the K models M and the nth time series Tn are taken as
input. A subsequence τn,j on Tn corresponds to any ofM for k = 1, 2, · · · , K, based on the
similarity Ψ(M, τ). A K-dimensional vector is output as the feature.

The intuitive explanation is that each model in M is assumed to represent a sub-
sequence, and the whole time series Tn is approximated by the subsequences. In the
approximation, while allowing for overlap, the positions on Tn are slid so that there are no
gaps, and the model Mk and its position jω(1 ≤ ω ≤ Ωn) are searched for the position that
best approximates the subsequences on Tn. Here, Ωn is the number of slides on Tn, in other
words, the number of models used to approximate Tn. The model number that maximizes
the similarity for the ωth slide and its position (kω, jω) are given as follows:

(kω, jω) =



argmax
1≤k≤K,j=1

Ψ(Mk, τn,1) (ω = 1)

argmax
1≤k≤K,jω−1<j≤jω−1+L

Ψ(Mk, τn,j) (1 < ω < Ωn)

argmax
1≤k≤K,j=J

Ψ(Mk, τn,J) (ω = Ωn)

(1)

The set of (kω, jω) in Equation (1) is denoted by

Pn = {(kω, jω)}Ωn
ω=1 (2)

Because models are slid with no gaps, jω increases between [1, L] as ω increases by 1
for (kω, jω) ∈ Pn. Note that jω never exceeds J. The number of slides Ωn depends on the
set of modelsM and the time series Tn.

Once Pn is determined, a K-dimensional feature vector Zn is calculated based on the
following equation.

Zn,k =


min
j∈Pn,k

Ψ(Mk, τn,j) i f k ∈ {kω}Ωn
ω=1

max
1≤j≤J

Ψ(Mk, τn,j) i f k /∈ {kω}Ωn
ω=1

(3)
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where Pn,k is the set of jω in Pn satisfying kω = k. That is,

Pn,k = {jω |kω = k, 1 ≤ ω ≤ Ωn} (4)

The LOPAS transform is the above procedure for transforming time series data Tn to
features Zn.

3.3. Assignment Factor

Another way to look at the LOPAS transformation is to consider that the subsequence
τn,j used in the transformation to the features Zn,k is assigned to the model Mk. Other
subsequences are considered not to be assigned to any model. Here, we introduce an
assignment factor r and define rk,n,j = 1 if a subsequence τn,j is assigned to the kth model
Mk and rk,n,j = 0 otherwise. This is expressed mathematically as follows.

rk,n,j =


1 i f j = argmin

j∗∈Pn,k

Ψ(Mk, τn,j∗), k ∈ {kω}Ωn
ω=1

1 i f j = argmax
1≤j∗≤J

Ψ(Mk, τn,j∗), k /∈ {kω}Ωn
ω=1

0 otherwise

(5)

4. Proposed Method

In this section, we describe time series local patterns for anomaly detection and
propose a learning method for them. We named these patterns LOPAD (Local Patterns for
Anomaly Detection). We describe the basic idea of local patterns in Section 4.1 and explain
how they are learned in Section 4.2. In Section 4.3, we describe how to evaluate anomaly
scores of time series data using LOPAD.

4.1. Basic Concept

The proposed method learns a set of multivariate Gaussian distributions that represent
a sufficient variety of local patterns in the context of the LOPAS transformation inherent in a
set T of normal time series. For diagnostics, the LOPAS transformation is applied to the time
series data to be diagnosed using the set of models. The time series data are considered
anomalous if any of the subsequences deviates significantly from the normal pattern,
and the anomaly is detected by calculating the anomaly score based on the similarity at
that time. The anomalous subsequence is output as the reason for the anomaly detection.
Furthermore, because the model uses a multivariate Gaussian distribution to model the
pattern of subsequences, it can provide the probabilistic pattern with a confidence interval.

Specifically, instead of the shapelets used in OCLTS for the LOPAS transformation, K
multivariate Gaussian distributions of dimension L are retained. The mean and covariance
matrix parameters of the kth Gaussian distribution Mk are denoted by Mk = N (µk, Σk),
where µk, Σk are the parameters of the kth Gaussian distribution. The parameters of Mk are
estimated from the set of similar subsequences, and Mk is considered to have a distribution
of waveforms with similar patterns. The set of similar subsequences is the set of all local
patterns in the normal time series dataset T that satisfy the assignment factor rk = 1 as
described in Definition 4. In other words, the set of local patterns defined as

Tk = {τn,j|1 ≤ n ≤ N, 1 ≤ j ≤ J, rk,n,j = 1} (6)

contains the samples for estimating the parameters of the model Mk. Put another way,
the local patterns assignment procedure in the LOPAS transformation yields K clusters of
patterns. The model Mk represents the probability distribution of the clusters.

Furthermore, the similarity between Mk and the subsequence τn,j is defined as the
log-likelihood

Ψ(Mk, τn,j) = ln p(τn,j|µk, Σk) (7)
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where

p(τ|µ, Σ) ∼ N (µ, Σ) (8)

However, for optimal assignment, an appropriateMmust be obtained but this requires
that appropriate clusters be obtained. In the next section, we describe the objective function
and the learning method for optimizing these parameters.

4.2. Learning Method

The proposed method aims to obtain multiple multivariate Gaussian models that
represent all local patterns inherent in normal time series data. Specifically, the models are
obtained by the following two procedures:

• Assign subsequence to clusters by LOPAS transformation.
• Obtain a Gaussian model for each cluster.

These can be formulated as follows:

argmax
r,µ,Σ

N

∑
n=1

J

∑
j=1

K

∑
k=1

rn,j,k lnN (τn,j|µk, Σk) (9)

This objective function can be optimized by using the expectation–maximization
algorithm, which has long been used in K-means clustering and other methods. First, each
parameter in the modelsM µk, Σk(k = 1, . . . , K) is fixed and the assignment factor r is
obtained. Second, the parameters of the multivariate Gaussian model corresponding to
each cluster are updated by fixing r. By repeating these two procedures until the objective
function converges, we obtain a set of multivariate Gaussian models that represent the
various subsequence patterns inherent in a set of normal time series data.

Specifically, a model setM consisting of K Gaussian distributions initialized with
appropriate parameters is prepared. Using the procedure in Equation (4), we calculate
the assignment factor r for each K and obtain the set of assigned subsequences Tk. Next,
using Tk as input, we estimate the mean parameter µk and the covariance matrix parameter
Σk of the model Mk for each k. To estimate the mean parameter and covariance matrix
parameter of the Gaussian distribution, any method can be used, such as maximum
likelihood estimation.

The parameters are updated using the obtained µk and Σk. As described above,
M representing various subsequence patterns is obtained by repeating the two steps of
(1) subsequence assignment and (2) parameter updating until the termination condition
is satisfied.

The above algorithm is summarized in Algorithm 1.

Algorithm 1 Algorithm of the proposed method

Require: Time series dataset T ∈ RN×Q, number of models K, subsequence length param-
eter L

Ensure: M = {N (µk, Σk)}K
k=1

1: Initialize {N (µk, Σk)}K
k=1

2: repeat
3: for n = 1, . . . , N do
4: LOPAS transform on Tn usingM to obtain the assignment factor rn.
5: end for
6: for k = 1, . . . , K do
7: Update µk, Σk using a set of subsequences Tk.
8: end for
9: until Stationarity.
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4.3. Evaluation Method

Each model inM obtained by training represents subsequence patterns inherent in
normal data. Therefore, when the LOPAS transformation is applied to time series data,
the likelihood of each model should be large for normal time series data. Conversely,
anomalous data will result in a small likelihood for one or more of the models. Therefore,
the smallest of the K-dimensional feature vectors obtained by the LOPAS transformation is
adopted as the degree of normality of the time series data. In other words, if Znew represents
the K-dimensional features obtained by the LOPAS transformation for time series data Tnew,
the anomaly score a(Tnew) is given by the following formula.

a(Tnew) = −min
k

Znew,k (10)

The subsequence with the maximum anomaly can be regarded as the local pattern
that most greatly differs from the normal pattern in the time series data. Let Mk∗ denote the
model that has the maximum anomaly score and τ∗ denote the corresponding subsequence.
Let τ∗i be the ith value of τ∗. The possible values of τ∗i are considered to follow a Gaussian
distribution N (µi|{1,...,L}\i, σ2

i|{1,...,L}\i), conditioned by the points [τ∗1 , . . . , τ∗L ] \ τ∗i other
than τ∗i in τ∗ in Mk∗ . Therefore, by obtaining the conditional distribution at all points of i
and visualizing the range of

µi|{1,...,L}\i ± Cσi|{1,...,L} (11)

for each point, we can analyze the difference between the normal subsequence pattern and
the anomalous waveform (where C is an arbitrary constant).

5. Experiment and Evaluation
5.1. Accuracy in the UCR Dataset

We evaluate the proposed method on some data from the UCR dataset [10]. For the
experiment, the class with the largest number of data, defined originally as “Train” in the
dataset, was assumed as the normal class and was used as training data. The data for the
other classes were used as validation data. In the data defined originally as “Test”, data
with the same class as the training data were taken as the normal class, and data with other
classes were taken as the anomalous class. The training data were used for training, and the
anomaly score was calculated for each of the normal and anomalous data in the test data,
and the area under the curve (AUC) was calculated for evaluation.

The initial parameters ofM were set by estimating the Gaussian mixture model with
K mixed models for all subsequences of length L in the time series dataset T, and the
parameters of each model were used as initial parameters. Other hyperparameters were set
using validation data from among the number of models K = {10, 30, 50} and subsequence
length L = {0.1, 0.2, 0.3} ×Q.

The experimental results are shown in Table 1. The proposed method detected anoma-
lies with the same accuracy as OCLTS. Note, however, that OCLTS uses a highly non-linear
transformation based on a kernel method to calculate the anomaly, whereas the proposed
method uses a simple method to calculate the anomaly.

5.2. Visualization Evaluation Using Current Data

In this experiment, we used a dataset of solenoid current measurements called NASA
Shuttle Valve Data [11]. As a preprocessing step, data were sampled every 100 points from
the original time series of length 20,000 to make a time series of length 200. The time series
is scaled so that the minimum and maximum values are [0, 1]. In the dataset, the seven
time series shown in Figure 2 are taken as normal data, and the models are trained with
the proposed method and OCLTS, respectively. After a certain period of time with noisy
steady current in the first half of the time series, the data enters a phase in which the current
rises. During the rise phase, the current temporarily drops during the rise, but soon rises
and enters the steady current phase, where the current remains high. The current then
enters a descending phase, rising temporarily during the descending phase, but eventually



Eng. Proc. 2023, 39, 82 7 of 10

decreasing to near the initial current value. Normal data tend to differ in the timing and
magnitude of the temporary drops or rises during the rise and fall phases. For the anomaly
data, the time series data shown in Figure 3 are used. These data do not show a temporary
drop in the current value during the rise phase. The proposed method and OCLTS were
applied to these data to diagnose and visualize the anomaly.

Table 1. Comparison of AUC in UCR time series data.

LOPAD (Proposed) OCLTS

Plane 1.000 1.000
Trace 0.985 1.000

SonyAIBORobotSurface1 0.992 0.950
SonyAIBORobotSurface2 0.948 0.914

ECGFivedays 1.000 0.980
ECG200 0.801 0.834

ECG5000 0.932 0.984
MiddlePhalanxTW 0.994 0.991

ProximalPhalanxOutlineAgeGroup 0.899 0.883

Figure 2. Seven time series of current measurements in NASA Shuttle Valve Data used as train-
ing data.

Figure 3. Anomaly data in NASA Shuttle Valve Data. The current rise phase is highlighted, which is
different from the pattern of normal data.
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First, the results of the OCLTS visualization are shown in Figure 4. The black line is
the original time series, and the upward phase showing the anomaly pattern is enlarged.
The red line shows the shapelet obtained by training in OCLTS. The learned shapelet
appears to be the average pattern of the training data. In the training data, the position of
the temporary dip in the ascending phase varies, and as a result of learning the average
pattern, the temporary dip disappears in the learned pattern. The visualization results of
the proposed method are shown in Figure 5, where the normal pattern region is obtained
as C = 2 in Formula (11). The normal pattern region obtained using the proposed method
shows a distorted region with repeated unevenness, and the original time series (black
line) is found to be out of the normal region. This implies that the proposed method’s
normal pattern contains some kind of uneven waveform in the ascending phase. Thus,
the proposed method provides insight into the behavior of patterns based on subsequences,
which is difficult to achieve with conventional shapelets.

Figure 4. Results of visualization analysis using OCLTS. The black line represents the time series data
and the red line represents the shapelet obtained by training.

Figure 5. Results of visualization analysis using LOPAD (proposed). The black line is the time series
data, and the pink area indicates the normal pattern.
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5.3. Limitations of Our Method

The above results demonstrate that our proposed method is effective in anomaly
detection in various domains of data. However, we should mention that there may be
situations where our proposed method fails. First, our proposed method is designed to
identify anomalies primarily based on the most irregular subsequence and is unable to
consider correlations between subsequences. In such cases, it is necessary to employ OCLTS,
which can capture complex correlations between subsequences that cannot be resolved
due to its kernel method. Furthermore, both the proposed method and OCLTS generate
features from time series data using the LOPAS transform, they cannot model in which the
training data do not have roughly similar shapes.

6. Conclusions

In this paper, we proposed a representation learning method based on the probabilistic
behavior of subsequences for anomaly detection in time series. Experiments confirmed
that the proposed method has anomaly detection performance comparable to that of the
conventional method OCLTS, but with a more transparent anomaly calculation procedure.
Furthermore, the probabilistic modeling of subsequence patterns provides insight into the
reason why anomaly detection differs from OCLTS.
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