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Abstract: The aeronautical sector is a vital part of the Brazilian industrial landscape, contributing
to the development of new technologies and production techniques with potential applications in
other industries. However, due to its restricted nature, there are limited studies on implementing
improvements in its systems, highlighting the need for attention in specific subareas of companies in
this sector. One such area is the production planning department, especially the forecasting techniques
applied in the supply chain, which play a crucial role in the operations of any company and are a
determining factor in decision making. The objective of this research is to compare the effectiveness of
various time-series forecasting methods, including classical statistical methods and neural networks.
The study employs a real-time series that depicts the consumption of a specific material extensively
used in the production line of a major Brazilian aircraft manufacturer. The proposed forecasting
methods are applied, and the results are compared using three different evaluation metrics. The
objective is to emphasize the significance of optimizing strategic planning within the industry and
the potential savings that can be achieved by selecting the best forecast. In conclusion, the findings of
this study can be used to enhance the efficiency of the supply chain and operations of companies in
the aeronautical sector.

Keywords: forecasting; time series; aeronautical industry; supply chain; statistical methods

1. Introduction

The constant evolution of human needs has always necessitated new technologies
and improved processes to meet the growing demand. Throughout history, industries
have undergone significant transformations as new mechanisms were developed. Today,
we are witnessing the emergence of Industry 4.0, a new revolution that is transforming
manufacturing into a more connected and automated environment. This technological
era emphasizes the integration of systems, both vertically and horizontally, to facilitate
decision making within the production chain [1].

Enterprise Resource Planning (ERP) systems facilitate integration and enable compa-
nies to manage all aspects of planning and raw material procurement. However, in practice,
various planning techniques are utilized based on the physical, chemical, or commercial
characteristics of the materials. For example, in the aeronautical industry, the average
monthly consumption method is commonly used for materials with a low unit cost and
high turnover rate in the production line. This technique involves configuring a periodic
numeric parameter within the ERP system to predict the monthly demand for a product
over a set number of months; then, purchase orders are generated based on this forecast.
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The average monthly consumption technique is often controlled and implemented in
the production line using the Kanban system. As described by Slack et al. [2], the Kanban
system is a method of operationalizing pull planning and control, where the customer stage
signals its supplier stage to provide the necessary supply. The system aims to efficiently
control the production stages and simplify administrative mechanisms, allowing users to
liquidate a larger amount of stock in the system at once instead of piece by piece [3].

The most common family of inputs for the type of planning discussed previously is
known as hardware, which refers to the physical equipment made of metal, such as screws,
nuts, rivets, rods, collars, and so on. In the aeronautical industry, the term ’hardware’ is
further categorized, and this study focuses on the analysis of a specific category known as
fasteners, which are devices used to assemble various structures. Based on the complex
nature of the manufacturing process in this sector, planning and purchasing for these
materials are often performed individually, using nonstandard means, such as historical
consumption averages or future demands based on product structure, which can be highly
inaccurate due to the possibility of using optional and alternative materials that are not
linked to the bill of materials. However, such arrangements are highly susceptible to errors
that can cause both excessive purchases, leading to storage overload and raw material
obsolescence, as well as material shortages in stock, potentially resulting in production line
stoppages. As a result, inventory planning and management must be carefully managed to
ensure the smooth operation of the production line.

Given the large number of parts and components in an aircraft, it can be challenging
to manage all sectors and necessary inputs accurately. This can result in the procurement of
raw materials in erroneous quantities, which can directly affect specific stages of production.
Therefore, there is a need for forecasting techniques that provide more accurate projections
of the real demand within the supply chain.

2. Case Study and Data

The main objective of this article is to compare different time-series forecasting meth-
ods applied to a real database. The database consists of 42 monthly consumption values for
a specific category of raw material utilized in aircraft construction by a prominent Brazilian
aeronautical manufacturer. The material under study is a flat steel washer used in various
types of aircraft within the company for assembling internal structural parts in a variety of
areas such as panels, supports, windows, seats, air conditioning and refrigeration systems,
landing gear, cabling, electrical systems, doors, equipment, tubes, and more. To ensure
business confidentiality, it will be referred to as “Material 1” rather than by its real market
identification (part number).

In this way, the proposal is to compare the efficiency of these methods by presenting
some error metrics. The following nine methods are discussed in this work:

1. Simple Exponential Smoothing;
2. Holt;
3. Holt–Winters Additive;
4. Holt–Winters Multiplicative;
5. ETS (M,N,A);
6. Naïve;
7. ARMA (2,1);
8. AR (2);
9. Neural Network.

3. Materials and Methods

The first stage of the process involved obtaining the database by extracting it from
the company’s Enterprise Resource Planning (ERP) system. The original database is a
Microsoft Excel spreadsheet, where each row represents a different material, and each
column represents different months/years of consumption in the production line, along
with other information that is irrelevant for this study.



Eng. Proc. 2023, 39, 74 3 of 15

The next step of the methodology involved the selection of the specific material to
be studied. In order to ensure the feasibility and accuracy of the results, it is preferable
to choose a material that does not exhibit extreme variations or a large number of null
values, as these can make it difficult to execute the proposed forecasting methods effectively.
Once a suitable material was identified, it was important to carefully clean and preprocess
the data in preparation for the subsequent analysis. This typically involves removing
other materials not chosen and removing columns that contain information not useful
for this study, for example, the location of the manufacturing plant, the specific company
code/identification, lead time, transport time, and other irrelevant details. Finally, to
facilitate reading, the columns were inverted by the lines of this worksheet, so that the
identification of the material was represented by the column, and the values of the monthly
consumption were represented by the lines, remaining vertical.

Thus, the treated database was imported into the integrated development environment
(IDE) RStudio (2022.07.1 version), where through R language the time-series forecasting
methods were applied. After the import, the first step in analyzing the time series was
to examine the behavior of the data and assess whether they exhibited seasonality and
stationarity. This involved generating a line chart of the complete series, calculating the
descriptive statistics, creating a histogram, a box plot, and decomposing the data. In order
to develop a forecast model, a training dataset was created using 36 of the 42 months of
consumption data, covering the period from March 2019 to February 2022 (approximately
85.7% of the original dataset). The remaining six months of data were used for final analysis
and comparisons with the results of the forecast models.

The final stage of the study involved applying all the proposed forecasting methods
and measuring their respective metrics: the Symmetric Mean Absolute Percentage Error
(sMAPE), Theil’s U Index of Inequality, and the Root Mean Square Error (RMSE). This
allowed for an evaluation of which models were the best fit for the analyzed data. It is
important to note that the efficiency of the methods was evaluated by determining the ac-
curacy of each procedure, resulting in a comprehensive and effective comparative analysis.

4. Results

To begin with, it is important to observe the complete time series for the studied
material in this work. Figure 1 shows the line chart for all the consumption data (from
March 2019 to August 2022), which indicated a significant reduction in consumption
towards the end of 2019, followed by a gradual increase from the beginning of 2022. While
there could be several hypotheses to explain this phenomenon, such as a change in the
product structure via a study of the company’s engineering, this study only focuses on the
mathematical analysis and does not delve into any managerial aspects.

To understand the behavior of the series, we analyzed some of the data obtained
from descriptive statistics. As shown in the previous Figure, the series did not display any
apparent seasonality. Table 1 presents the descriptive statistics for this series.

Upon analyzing Table 1, it becomes apparent that Material 1 had a slightly positive
skewness, indicating that the right tail of the distribution was slightly longer than the left
tail. This was further confirmed by the histogram shown in Figure 2, although it was not
easily noticeable by visual inspection. However, the kurtosis value was positive, indicating
that the distribution had heavier tails than a normal distribution, which characterizes the
flattening or lengthening of the curve. Additionally, Figure 2 highlights that there was a
significant concentration of consumption values in the range of 20,000 to 30,000 units.

Figure 3 displays a boxplot that can help identify any outliers in the data, which are
observations that deviate significantly from the rest of the time series values. It is evident
from the plot that the series did not contain any outliers.
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Figure 1. Material 1 time series.

Table 1. Descriptive statistics for Material 1.

Statistics Value

Minimum 3108
First Quartile 19,261

Median 26,367
Mean 30,507

Third Quartile 49,003
Maximum 63,268
Variance 342,361,647

Standard Deviation 18,503.02
Skewness 0.2
Kurtosis 1.84

Figure 2. Material 1 histogram.
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Figure 3. Material 1 boxplot.

The time series decomposition shown in Figure 4 provides valuable insights into the
behavior of the data, where it revealed the absence of seasonality in the series. Furthermore,
regarding the trend, as mentioned before, there was a considerable reduction from 2019
onwards, which remained practically stable and only showed an upward trend again from
the beginning of 2022, forming an approximate drawing of a negative parabola.

Figure 4. Decomposition of Material 1.

4.1. Forecasting Methods
4.1.1. Simple Exponential Smoothing

The simple exponential smoothing model is a widely used method in demand fore-
casting and can be used when the sample size is small. The technique is built through a
weighted average of past and present values, where exponential weighting assigns greater
weights to more recent data and smaller weights to more distant observations [4].

The result of this technique are always constant; in other words, all the forecasts
assume the same value, equal to the last level component. This implies that it is appropriate
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only when the time series does not have a trend or seasonal component [5]. The results of
applying this method to the database can be observed in Figure 5.

Figure 5. Graph with forecast confidence intervals for Material 1 using Simple Exponential Smoothing.

According to Figure 5, a significant disparity was observed between the actual values
of the material 1 time series and the forecasted values for the same period. Hence, the
consistent outcomes of the technique were inadequate for the data of this study, as it failed
to predict the consumption peak that commenced in March 2022.

4.1.2. Holt

The Holt method, proposed by Holt [6], extends simple exponential smoothing to
enable the forecasting of data with a trend. As a result, the forecast values generated by
this method are not constant but exhibit a consistent trend (either increasing or decreasing)
that extends indefinitely into the future.

The results of applying this method can be observed in Figure 6 below.

Figure 6. Graph with forecast confidence intervals for Material 1 using Holt’s method.
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According to Figure 6, there was a significant disparity between the predicted data and
the actual consumption values for Material 1. The expected trend should be upward, but
the forecast depicted a distinct downward trend. Consequently, this error was substantial
enough to conclude that this method was not suitable for this type of time series.

4.1.3. Holt–Winters

The Holt–Winters method is a refined extension of the exponential smoothing ap-
proach, where the smoothing procedure provides an overall impression. This method also
allows for studying future trends by generating medium and long-term forecasts.

Holt [6] and Winters [7] extended the Holt method to capture the seasonality of a series
by proposing two variations that differ in the nature of the seasonal component: additive
and multiplicative. Hyndman and Athanasopoulos [5] demonstrated that the additive
method is suitable when seasonal variations are relatively constant throughout the series.
In this case, the seasonal component is expressed in absolute terms on the scale of the
observed series, and in the level equation, the series is seasonally adjusted by subtracting
the seasonal component, resulting in an approximately zero sum within each year. On
the other hand, the multiplicative method is advised when seasonal variations change
proportionally with the level of the series. In this case, the seasonal component is expressed
in relative terms (percentages), and the series is seasonally adjusted by dividing it by this
seasonal component.

Therefore, beginning with the additive method, the outcomes of applying the Holt–Winters
to the Material 1 series are illustrated in Figure 7 below:

Figure 7. Graph with forecast confidence intervals for Material 1 using the Additive Holt–Winters.

By examining the preceding figure, it becomes evident that the method predicted three
negative values for the months of March, April, and June 2022. However, such negative
values were not feasible in this application. This study employed a real-time series that
represented the consumption of a raw material in a production line, and given this context,
consumption below zero was not possible. Therefore, it can be concluded that the method
was not suitable for the Material 1 series.

Regarding the multiplicative method, while there were no negative values in the
forecast for this six-month period, the forecasted trend ended up showing a negative tilt,
which contradicted the actual data that exhibited consumption peaks starting from March
2022. This discrepancy in the value relationship can be observed in Figure 8, where due
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to the multiplication equation employed by the method, the confidence intervals were
significantly larger, resulting in a noticeable change in the scale of the line graph.

Figure 8. Graph with forecast confidence intervals for Material 1 using the Multiplicative Holt–Winters.

4.1.4. ETS

Considering the variations in the combinations of trend and seasonality components
in the previously mentioned exponential smoothing method, it is possible to use ten new
techniques. Each one is labeled by a pair of letters (T and S) that define the type of trend (T)
and seasonality (S) components. This classification was first proposed by Pegels [8], who
also included a method with a multiplicative trend. It was later extended by Gardner [9] to
include methods with an additive damped trend and by Taylor [10] to include methods
with a multiplicative damped trend.

The point forecasts generated by the models are identical when the same smooth-
ing parameter values are used. However, they produce different prediction intervals.
Additionally, for each method, there can be two models: one with additive errors and
another with multiplicative errors. According to Hyndman and Athanasopoulos [5], to
differentiate between these two models, a third letter is introduced, denoting the error term.
Consequently, each state space model is labeled as ETS (*,*,*) representing (error, trend,
seasonality), and this labeling convention can also be interpreted as exponential smoothing.
Each combination of components has its own set of equations, and the possibilities for each
component are as follows: Error = A, M; Trend = N, A, Ad; and Seasonality = N, A, M. In
this context, A represents additive, M represents multiplicative, N represents none, and Ad
represents additive damped.

In this study, all the possible label combinations were tested, and the root mean square
error (RMSE) was measured for each combination by comparing the predicted data with
the actual data. The model with the lowest RMSE was selected, which happened to be the
ETS (M,N,A): multiplicative error, no trend, and additive seasonality. The computed results
of this method can be observed in Figure 9.

Upon comparing the predicted data generated by the ETS (M,N,A) method with the
actual consumption values for the corresponding period, it is apparent that the technique
accurately forecasted a positive trend, distinguishing itself from certain previous methods.
Nevertheless, there remained a notable disparity in the magnitude of the peaks.
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Figure 9. Graph with forecast confidence intervals for Material 1 using the ETS (M,N,A).

4.1.5. Naïve

The Naïve model is one of the simplest methods for time series forecasting and works
well for many economic sectors and financial time series. The Naïve Simple technique
involves using the exact value of the last observation in the time series as the forecast, but
some variations take into consideration the seasonality and are referred to as Seasonal
Naïve. In this case, the forecast is based on the same observed value from a previous point
in the same season, such as the value from the same month but in the previous year [5].

The model used in this work is the Seasonal Naïve method, considering the forecast
value of the same month from the previous year in the time series. Figure 10 depicts the
graph of the results obtained by applying this model.

Figure 10. Graph with forecast confidence intervals for Material 1 using Naïve.

Upon examining the forecast graph generated by the Naïve method and comparing it
with the actual data, several noteworthy observations come to light. While this method
demonstrated limitations in accurately predicting the extreme peaks observed in four
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particular months, it showcased exceptional accuracy during the months of June and July,
closely aligning with the actual data and capturing the upward trend exhibited by the data.
These findings suggest that the Naïve method exhibits potential for capturing seasonality
in specific months, albeit with limitations in predicting extreme fluctuations.

4.1.6. ARIMA

The designation of the ARIMA model stands for Autoregressive Integrated Moving
Average and refers to a type of self-regressive model that allows for predicting the values
of a variable based on its previous values without the need for other auxiliary information
or related variables [11]. The generic name ARIMA for these models refers to their three
main components: Autoregressive (AR), Integrated (I), and Moving Average (MA). In these
models, the aim is to describe autocorrelations in the data, where each observation of a
variable at a given time is modeled based on previous values over time for the same variable.

In this approach, the modeling process involves deriving an ARIMA model that fits
the given dataset, which requires analyzing the essential characteristics of the time series,
such as trend, seasonality, cyclical variations, autocorrelation functions, and residuals [5].
Another point is that for the application of the model, the time series must necessarily be
stationary, meaning that their statistical properties remain constant over time. If they are
not stationary, it will be necessary to differentiate the data until they become stationary.

The initial step of the ARIMA model involved applying a logarithmic transformation
to the data and subsequently differencing them to achieve stationarity. In the case of the
time series of Material 1, it was only necessary to difference it once to achieve stationarity.
To confirm this, the Dickey–Fuller unit root test was used.

Consequently, to proceed with the application of the method, it was necessary to
identify the model using the autocorrelation function (ACF) for the “MA” term and the
partial autocorrelation function (PACF) for the “AR” term. Both were applied to the
differenced time series and can be analyzed in Figure 11.

Figure 11. Graph of the cumulative sum of the autocorrelation function (ACF) and partial autocorre-
lation function (PACF) for the differenced time series of Material 1.

Based on these analyses, several combinations for the method can be considered.
The chosen models were the ARMA(p = 2, d = 0, q = 1) and the AR(p = 2, d = 0, q = 0).
Subsequently, the forecasts generated by both the ARMA(2,1) and AR(2) models for the
Material 1 time series did not capture a significant peak in March 2022, in contrast to the
actual value of the series, which was considerably higher. However, the confidence intervals
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were able to approximate the substantial increase in values from that period onwards, which
some of the previously mentioned methods failed to capture. A visual comparison between
the actual data and the generated forecasts can be observed in Figures 12 and 13.

Figure 12. Graph with forecast confidence intervals for Material 1 using ARMA(2,1).

Figure 13. Graph with forecast confidence intervals for Material 1 using AR(2).

4.1.7. Neural Network

The final technique applied in this study was the neural network, based on the
autoregression with neural networks (AR-NN) approach that combines autoregression
(AR) and neural networks (NN) techniques to model time series. The results obtained with
this technique are presented in Figure 14.
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Figure 14. Graph with forecast confidence intervals for Material 1 using the Neural Network.

The analysis of the forecast graph generated by the neural network reveals several
noteworthy observations. Firstly, the method successfully captured and predicted a positive
trend that aligned reasonably well with the actual data. However, it showed limitations in
accurately predicting the highest peaks of the data, which suggests potential challenges in
capturing extreme fluctuations. Despite this, it is important to highlight the remarkable
performance of the forecast during the months of June and July, where during these months,
the predicted data closely aligned with the actual data, indicating a high level of accuracy
and precision during that specific period. These findings demonstrate the model’s ability
to capture and replicate patterns effectively, particularly during months characterized by
more stable and predictable trends.

4.2. Evaluation Metrics

To determine the best-performing forecasting method among those presented, it was
necessary to measure the errors by comparing the actual data with the predicted data.
Therefore, this study employed three different metrics to analyze the effectiveness of the
techniques: the Symmetric Mean Absolute Percentage Error (sMAPE), Theil’s U Index of
Inequality, and the Root Mean Square Error (RMSE).

The Symmetric Mean Absolute Percentage Error (sMAPE) was proposed by Makri-
dakis [12] in order to correct some disadvantages; that is, a modified Mean Absolute
Percentage Error (MAPE) has a heavier penalty for forecasts that exceed the actual than
those that are less than the actual. So, this metric is a modified MAPE, in which the divisor
is half of the sum of the actual and forecast values.

The Theil’s U Index of Inequality is an accuracy measure often cited in the literature,
and according to Bliemel [13], there is confusion about this index, which may result from
the fact that Theil [14] proposed two distinct formulas, but with the same name. The first
proposal is bounded between 0 and 1, and this metric is used in this study. In the second
proposal, the upper limit is infinite. This metric analyzes the quality of forecasts, and the
closer it is to zero, the lower the prediction error generated by a specific model. In other
words, it indicates that a forecast is better than the trivial forecast [15].

The Root Mean Square Error (RMSE) is calculated as the square root of the mean
of the square of all of the error. It is widely used and considered an excellent general-
purpose error metric for numerical predictions. The RMSE provides a reliable measure
of accuracy, particularly when comparing forecasting errors among different models or
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model configurations for a specific variable. However, it should be noted that the RMSE is
scale-dependent and cannot be directly compared between variables [16].

In Table 2, it is possible to observe the three mentioned metrics for each of the nine
forecasting methods.

Table 2. Evaluation metrics for Material 1.

Forecasting Method sMAPE Theil’s U Index of Inequality RMSE

Simple Exponential Smoothing 1.094186 0.7519919 34,314.91

Holt 1.500099 0.8816619 40,232.01

Holt–Winters Additive 1.623714 0.9098164 41,516.76

Holt–Winters Multiplicative 1.559045 0.8978318 40,969.88

ETS(M,N,A) 0.8413673 0.6653724 30,362.28

Naïve 0.6081907 0.5440008 24,823.86

ARMA(2,1) 1.230298 0.7892819 36,016.53

AR(2) 1.203849 0.7858103 35,858.11

Neural Network 0.5643272 0.5319228 24,272.71

After examining the table above, it becomes evident that the Holt–Winters methods,
both additive and multiplicative, yielded the highest error measurements. This indicates
that these particular methods were less effective in accurately forecasting the given time
series. Similarly, Holt’s method and the combinations of the ARIMA, such as the ARMA(2,1)
and AR(2), exhibited high error metrics, further suggesting their inefficiency in this context.
Surprisingly, the simple exponential smoothing method, despite its simplicity and constant
forecasting values, outperformed more complex approaches such as the ARIMA models.
The top three performing methods, ranked in order, were the Neural Network, Naïve,
and ETS (M,N,A). These findings highlight the importance of selecting the appropriate
forecasting techniques tailored to the characteristics of the specific time series at hand. In
the following section, conclusions are drawn based on these results and potential avenues
for future research are discussed.

5. Discussion

The obtained results provide valuable insights into the performance of different
forecasting methods in the context of the analyzed time series. The observed high error
measurements for the Holt–Winters methods, both additive and multiplicative, suggest
that these approaches may not be well-suited for capturing the underlying patterns and
dynamics of the given time series. Similarly, the relatively high error metrics observed for
Holt’s method, ARMA(2,1), and AR(2) indicate their suboptimal performance in capturing
the complexities of the analyzed time series. These methods, although widely used, rely on
assumptions that might not hold true for every type of time series. Consequently, alternative
approaches should be considered for improved forecasting accuracy in similar contexts.

Remarkably, the simple exponential smoothing method exhibited better performance
compared to the more complex models. Despite its straightforward nature and constant
forecasting values, it demonstrated competitive accuracy in predicting the examined time
series. This finding aligns with Makridakis et al.’s [17] study that emphasized the effec-
tiveness of simple methods, which often produced more accurate forecasts compared to
complex approaches like ARIMA models.

The top three performing methods, namely the Neural Network, Naïve, and ETS
(M,N,A), merit further attention. The ETS ((M,N,A), based on exponential smoothing, incor-
porates multiple components such as error, trend, and seasonality, and has been successfully
applied to various time series forecasting problems. Naïve forecasting, although simplistic
in its approach, often serves as a benchmark against which more sophisticated methods are
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evaluated. Its competitive performance in this study suggests that even basic forecasting
strategies can yield accurate results under certain conditions. Finally, the Neural Network
approach, known for its ability to capture nonlinear relationships and complex patterns,
displayed promising results, indicating its potential for accurate time series forecasting.

From a broader perspective, these findings underscore the significance of compre-
hending the characteristics and dynamics of the specific time series when choosing an
appropriate forecasting method. In the context of this study, the time series exhibited
high volatility, posing challenges for accurate forecasting. Consequently, no single method
emerged as universally superior in all scenarios, highlighting the imperative nature of
meticulous evaluation and comparison of diverse techniques.

Future research directions in time series forecasting may include investigating the
effectiveness methods that combine the strengths of multiple forecasting techniques, ex-
ploring hybrid approaches that integrate machine learning and statistical modeling, and
considering also the impact of external factors on the forecasting accuracy.

In conclusion, this study offers valuable insights into the performance of various
forecasting methods, with implications for practitioners and researchers in the field of
time series analysis, particularly in the context of the aeronautical industry, where raw
materials play a vital role. The findings highlight the significance of selecting the most
suitable method, as even a slight difference in forecasting error can lead to substantial
cost savings when planning and procuring essential inputs. By leveraging these findings
and considering the suggested future research directions, it becomes feasible to enhance
forecasting capabilities and make significant contributions to the advancement of the field
of time series forecasting.
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